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ABSTRACT 
Optical Head-Mounted Displays (OHMDs) allow users to read dig-
ital content while walking. A better understanding of how users 
allocate attention between these two tasks is crucial for improving 
OHMD interfaces. This paper introduces a computational model for 
simulating users’ attention switches between reading and walking. 
We model users’ decision to deploy visual attention as a hierarchical 
reinforcement learning problem, wherein a supervisory controller 
optimizes attention allocation while considering both reading ac-
tivity and walking safety. Our model simulates the control of eye 
movements and locomotion as an adaptation to the given task 
priority, design of digital content, and walking speed. The model 
replicates key multitasking behaviors during OHMD reading while 
walking, including attention switches, changes in reading and walk-
ing speeds, and reading resumptions. 

CCS CONCEPTS 
• Human-centered computing → HCI theory, concepts and 
models. 
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1 INTRODUCTION 
Improving usability and safety is crucial in designing better interac-
tions for Optical Head-Mounted Displays (OHMDs). Understanding 
the dynamics of attention switching is essential to tackling these 
challenges efectively. OHMDs provide users with convenient ac-
cess to information during their everyday tasks [82], particularly 
when they are on the move. Nonetheless, achieving efcient content 
comprehension on the go is not always easy. A core cognitive prob-
lem is illustrated in Figure 1. When reading on OHMDs, users must 
constantly alternate their attention between the digital content 
and physical surroundings [83]. This challenge is exacerbated by 
head perturbations during walking, which can disrupt the reading 
performance [8]. To optimize both reading experience and walking 
safety, HCI research needs to better understand how users allocate 
attention during mobile multitasking situations. However, users’ 
attention switching strategies can be afected by several factors, 
including the individual and their priorities [30], walking speed 
[25], the environment [43], and the design of the OHMD interface 
[57, 83]. To gauge this complex interplay of factors, leveraging com-
putational models emerges as a promising approach, with which 
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Figure 1: We present a computational model of how users allocate attention when interacting with Optical Head-Mounted 
Displays (OHMDs) while walking. When using OHMDs, reading competes with the need to attend to the environment. Users 
must control walking to adapt to external situations, such as walking around a slippery area after spotting a warning sign. Our 
model makes accurate predictions of attention switching strategies in such scenarios. 

human behaviors can be framed as an adaptation to given con-
straints [26, 54]. 

Computational models could ofer insights into the problem of 
attention switching. Prior work has modeled multitasking behav-
ior computationally in other safety critical areas, such as driving 
[35]. However, their fndings do not readily extend to the context 
of interacting with OHMDs, which poses distinctive challenges. 
OHMDs seamlessly integrate digital content with the users’ phys-
ical surroundings within their feld of view. When users access 
information on OHMDs’ transparent displays, they simultaneously 
perceive portions of the external environment, which can change 
dynamically. Consequently, this constant infux of surrounding 
environment updates creates competition for attention with the 
reading task on OHMDs [32, 61, 83]. As a result, users frequently 
switch their attention, potentially impairing reading performance 
and introducing safety risks. 

In this paper, we present a predictive model to shed light on users’ 
walking and reading behaviors with OHMDs. This model simulates, 
on a moment-by-moment basis, how users switch their attention as 
they walk and perceive information from an OHMD. Building upon 
the theory of computational rationality [26, 54], we frame atten-
tion switching behavior as a sequential decision-making process 
constrained by cognitive, perceptual, and motor factors. Within 
this framework, we consider the user as a rational agent striving to 
apply the optimal strategy for balancing attention between OHMD 
content and the surrounding environment. In this multitasking sce-
nario, the agent’s primary goal is to maintain efcient reading and 
environmental awareness, and walk properly. Unlike some previous 
models of multitasking, which necessitated explicit specifcations 
of how switching occurs [63, 65], our approach enables us to predict 
such strategies, or policies. Specifcally, we can predict how these 
strategies adapt to various factors relevant to OHMD interaction, 
including walking speed, task priorities, and interface design. 

We found that users’ attention switching can be efectively mod-
eled as a hierarchical control problem with sparse rewards. In partic-
ular, we model user behavior for reading on OHMDs while walking 

across three levels: 1) At supervisory level, a controller decides the 
task prioritization by allocating attention; 2) At task level, individ-
ual task models control the agent’s behavior within each specifc 
task, utilizing working memory to track task status; 3) At motor 
level, we address the question of ’how to look’ and ’how to walk’ – 
this involves managing eyeball movements to acquire relevant in-
formation from a scene, and managing walking dynamics, including 
lateral movement and walking speed control. 

Our model is evaluated through four studies. Study 1 examines 
attention switches as an adaptation to task priority and walking 
speed. Study 2 assesses visual perception and readability during 
walking, comparing reading speed ratios with human data. Study 
3 investigates reading resumption after attention switches, ana-
lyzing behaviors across three OHMD layouts against human data. 
Finally, Study 4, based on Zhou et al.’s work [83], explores how 
attention adapts in a realistic task, assessing agent’s walking speed 
adjustments for optimal reading efciency, with comparisons to 
human data in terms of attention allocation, walking speed, and 
reading. The results show that our model successfully captures the 
key trends in human performance and could be used to predict 
users’ behaviors of reading while walking. The predictions could 
further guide the design of adaptive interfaces that optimize the 
information acquisition experience using OHMDs. 

To sum up, we propose the frst simulation model of OHMD 
interaction called Heads-Up Multitasker1, which can closely re-
semble user behaviors in terms of attention allocation, walking, and 
reading. It features an agent with pixel-based visual perception that 
works directly in MuJoCo [76], a physics engine renowned for its 
fexibility in modeling diverse interaction scenarios. Our technical 
contributions are detailed as follows: 

• A hierarchical reinforcement learning (HRL) architecture 
with novel POMDP formulations, efectively capturing key 

1https://github.com/Synteraction-Lab/heads-up-multitasker 

https://1https://github.com/Synteraction-Lab/heads-up-multitasker
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cognitive aspects of multitasking on OHMDs, such as read-
ing, walking, memory, oculomotor control, and visual percep-
tion. This fexible, modular design allows for easy adaptation 
to diverse scenarios by altering specifc modules, illustrated 
in our studies on varied walking controls, agent-user model-
ing, and OHMD layout adjustments. 

• A fexible simulation environment in MuJoCo that allows 
modeling OHMD scenarios with high fdelity, including 
pixel-based visual perception, attention deployment based 
on oculomotor control, and walking control. Unlike prior 
work [12, 35, 36], our model works directly in MuJoCo with-
out needing hand-crafted state/action spaces for the visual 
scene. 

• Empirical and simulation-based evaluations in the context 
of reading on OHMDs while walking, covering attention 
switch between OHMDs and environment, walking speed 
control, reading, and resumption behaviors. 

Section 2 reviews the relevant literature on OHMDs, attention 
switching, and computational modeling of interactive behavior. 
Section 3 introduces the hierarchical model overview, and Section 
4 delves into its detailed implementation. Section 5 provides an 
overview of the four studies, which are presented in the follow-
ing Sections. Sections 10 and 11 discuss the potential applications 
of these fndings and limitations. Finally, Section 12 provides the 
conclusion. 

2 RELATED WORK 
This work is positioned at the intersection of three research areas: 
1) Studies of how users acquire information on OHMDs while 
on the go, 2) computational models of multitasking and attention 
switching, and 3) reinforcement learning (RL) based models of 
human behavior. 

2.1 Information Acquisition on OHMDs while 
On-The-Go 

While information can be accessed through various modalities 
while on the move [50, 81], the visual modality has a critical role 
in information acquisition. Visual information holds distinct ad-
vantages that cannot be easily replicated by the auditory channel, 
primarily due to audio information’s inherently sequential and 
feeting nature [57, 82, 83]. Many papers have illustrated the bene-
fts of acquiring information by reading on OHMDs while walking 
[23, 37, 44, 53, 59–61, 82, 83]; also when compared to the common 
practice of reading on mobile phones in mobile scenarios [66, 67]. 

The transparent displays ofer users the distinct advantage of ac-
cessing on-screen information without compromising their aware-
ness of their surroundings. However, prior research has indicated 
that this advantage may come at the cost of increased cognitive 
load because users are required to simultaneously monitor their 
environment while engaging in tasks [49, 67] – in fact, users often 
struggle to maintain sufcient attention when multitasking on the 
move [6, 57]. Furthermore, there is an established trade-of between 
awareness of the surroundings and reading, and vice versa [37, 49]. 
Nevertheless, this trade-of could potentially be infuenced by de-
sign factors. For instance, Zhou et al. discovered that enhancing 
default text spacing can lead to improved reading performance [83]. 

Moreover, the see-through nature of OHMDs may impact the ease 
of perceiving displayed content in certain environmental condi-
tions, depending on factors such as lighting, background color, or 
texture [18, 19]. 

Recent research has also explored diverse methods for present-
ing information to users while they navigate and engage in tasks 
such as reading [61], text editing [23], or learning from videos 
[57, 58]. While much of the existing research relies on empirical 
studies to evaluate interface designs [31], simulation models could 
complement these eforts by providing a means to assess designs 
before user testing, thus enabling the optimization of designs and 
improvements in accessibility [48]. Our studies demonstrate our 
model could predict reading behaviors across various OHMD de-
signs without relying on empirical user data, ofering insights into 
optimal text layouts for walking readers. 

2.2 Computational Models of Multitasking and 
Attention Switching 

In multitasking, models like ACT-R [2], and EPIC [46] have been 
pivotal in explaining, analyzing, and predicting performance and 
attention switches during multitasking. Key developments include 
Salvucci et al.’s integration of a general executive into the ACT-R 
framework for better subtask management [62], and their further 
enhancements for modeling task switching [65]. A signifcant ad-
dition to this feld is the Threaded Cognition theory [64], which 
posits that cognitive processes do not always transpire sequentially, 
but rather operate in parallel threads or streams, each representing 
diferent cognitive tasks or processes that can occur concurrently. 
This theory ofers predictions regarding how multitasking behavior 
may result in interference, or lack thereof, depending on the specifc 
tasks involved. 

Multitasking has also been framed as an optimization problem of 
determining how individuals engaged in multitasking can best allo-
cate their limited resources to maximize overall task performance 
[51]. Cognitive Constraint Modeling (CCM) is an approach to under-
standing human cognitive processes by identifying and modeling 
the constraints in such optimization [27]. These constraints may 
include limitations in cognitive resources, such as attention or work-
ing memory capacity, biases in decision-making, or other factors 
infuencing how information is processed and decisions are made. 
This approach is relevant to our model, as we build on the concept 
of boundedly optimal control [27, 54]. 

However, the aforementioned approaches require signifcant 
efort when creating models of multitasking situations. Earlier mod-
els predefned user behaviors for specifc tasks and environments, 
which limited adaptability [54]. Instead, our POMDP-based method 
frames user behaviors as sequential decisions, allowing emergent 
strategies that are optimally adaptive to environmental and task-
related changes. Reinforcement learning (RL) is employed to derive 
these strategies, providing a dynamic, data-driven approach that 
surpasses the need for manually setting user behavior rules [71]. 
This results in a fexible modeling framework for various interaction 
and multitasking challenges [12, 15, 29, 34, 35, 40, 41]. 

Users’ decision-making and behaviors are complex cognitive 
processes when multitasking, adapting to various constraints, in-
cluding environmental factors, task demands, and cognitive and 
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physiological limitations [34, 35, 54]. Our model builds on the foun-
dational principles of hierarchical and boundedly optimal control 
[20], as illustrated in Jokinen et al.’s work [35], but extends to a 
novel task context. Unlike Jokinen et al.’s model, which is focused on 
driving, our model is specifcally designed for the unique challenges 
of reading on OHMDs while walking. 

2.3 Modeling Interactive Behavior with 
Reinforcement Learning 

Simulation-based science has emerged as a valuable approach in 
HCI research [48], with a growing interest in adopting Reinforce-
ment Learning (RL) to simulate human interaction. This trend is 
informed by computational rationality theory, which interprets 
human behavior through the lens of bounded optimality and ad-
vocates for RL methodologies [54]. Our work is positioned in this 
category of behavioral models. 

Prior work in simulating human visual attention using reinforce-
ment learning often involved manually crafted vision sensors and 
state-action spaces [12, 36, 55], limiting application scope. For ex-
ample, models like Gaze-based Selection [12] and Adaptive Feature 
Guidance [36] used encoded visual features within a 2D system. 
We extend previous approaches by adopting a ’pixel-based’ agent 
paradigm from recent RL research, allowing direct processing of 
camera views that simulate user vision [14, 74]. This method au-
tonomously discerns visual cues from raw sensory inputs and ofers 
a more versatile and adaptive framework for modeling dynamic 
visual attention scenarios. 

While the domain of multitasking research is expansive, models 
combining walking and information acquisition from OHMDs, to 
our knowledge, are yet to be developed, which applies to both time-
tested models such as ACT-R [3] and the burgeoning reinforcement 
learning paradigms. Yet, it’s noteworthy that hierarchical RL has 
found application in replicating the intricacies of human decision-
making processes [9, 21, 34, 35]. 

2.4 Summary 
Earlier research employing hand-crafted policies faces difculties 
in addressing the unique complexities of reading on OHMDs while 
walking, a task characterized by continuous scene changes and 
dynamic walking movements. To alleviate such complexities in 
oculomotor and locomotion control, we take inspiration from recent 
RL research building ‘pixel-based’ agents. These agents directly 
learn policies from the visual sensory inputs rendered in physics 
simulators [14, 74], eliminating the need for modelers to manually 
defne action and state spaces for the external environment. 

3 MODEL OVERVIEW: DEFINING A 
HIERARCHICAL CONTROL PROBLEM 

As previously explained, we use a hierarchical structure to de-
compose the user’s multitasking problem. All submodels are de-
fned as optimal sequential decision making processes with bounds 
[22, 26, 54]. The bounds include internal factors, such as constrained 
visual attention and memory capacity, and task priority; and exter-
nal conditions including digital content designs on OHMDs and 
walking speed. Some of these bounds, particularly the limited visual 
attention and memory, induce partial observability and uncertainty 

in the decision-making process. For instance, while reading, the 
agent cannot fully perceive changes in the environment, leading to 
uncertainty regarding walking safety. Similarly, when scanning the 
environment, the agent cannot read and may forget the last read 
word due to memory loss. 

These assumptions lead us to formulate the problems as Partially 
Observable Markov Decision Processes (POMDPs). A POMDP is 
represented by a tuple < �, �, �, �, � > defned by sets of states � , 
actions �, and observations � , environmental transition dynamics 
� , and a reward function �. At timestep � , an agent is in a state 
�� ∈ � and receives an imperfect observation �� ∈ � of the state, 
takes an action �� ∈ � based on the observation, and transitions 
into a new state �� +1 ∈ � via the transition dynamics � , and receives 
a reward �� = �(�� , �� , ��+1). The primary reason for modeling users’ 
visual attention behaviors as POMDPs lies in their character as se-
quential decision-making processes, as highlighted in various 
studies [12, 34, 35, 73]. Although parallel processing is possible in 
some scenarios, sequential task processing often emerges as a more 
efcient strategy for multitasking [16]. Consequently, employing 
POMDP as the core mechanism in our model is more appropriate. 
Intuitively, sequential decision-making implies that each choice a 
user makes, whether concentrating on reading or environmental 
cues, carries implications for future decisions [21]. For instance, 
overly focusing on reading might result in missing critical environ-
mental information, whereas excessive attention to surroundings 
could impede efective reading. Additionally, the POMDP, focus-
ing on partial observability, assumes that agents observe their 
world indirectly through sensory apparatus [54]. This concept fts 
well with scenarios where users must strategically choose their 
attention, i.e., where and when to look, aligning with real-world 
constraints like limited perception and cognitive capacity. 

Figure 2 presents an overview of our suggested framework for 
modeling the multitasking problem of reading while walking. The 
hierarchical model is structured such that higher-level models set 
targets for the lower-level models (emphasized with red arrows; 
these correspond to the actions ��� , ��, �� ), in addition to updat-
ing the internal state. Notably, the supervisory level and task level 
models are called sequentially, with the frequency specifed by a 
long-range timestep �� . Based on observations ��� of the internal 
state (full descriptions of state information can be found in the Sup-
plementary Material), the Supervisory Controller chooses a task via 
a binary decision �. Correspondingly, the agent will either read con-
tent on the OHMD or scan the environment to maintain awareness 
of its surroundings. The Read task outputs a target word index � to 
the Oculomotor Control, while the Scan task outputs an objective � 
– corresponding to either the lane to walk on or walking speed – to 
the Locomotion Control. The motor level models additionally get ob-
servations ��� , ��� of the external environment, and interact with 
it by actuating physical motors (via actions ��� , ��� ). These motor 
level models are called with higher frequency defned by a short-
range timestep �� . In Section 4 the superscripts {��, �, �, ��, ��}
are generally omitted to avoid unnecessary clutter, as the context 
indicates which submodel is discussed. 

Learning long-horizon tasks in RL can be challenging, especially 
if the agent receives rewards only once a task is accomplished (i.e., 
the reward function is sparse). This introduces an issue known as 
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Figure 2: The model consists of a three-level hierarchical structure with a Supervisory Controller (SC), task level models Read 
(R) and Scan (S), and motor level models for Oculomotor Control (OC) and Locomotion Control (LC). These submodels receive 
observations � from the underlying internal and external states, and interact with them through actions � while receiving 
rewards � (black arrows). The red arrows highlight how higher-level models set targets for lower-level ones: SC determines the 
focus task (via �), while R and S establish specifc targets � and � for directing motor level models. For higher-level models, 
these targets act as guiding actions. Conversely, for lower-level models, they are treated as observations that infuence and 
defne agents’ tasks. 

the credit assignment problem, meaning it is difcult for the learn-
ing algorithm to attribute rewards earned from successful outcomes 
to specifc actions [47]. In hierarchical RL, long-horizon tasks can be 
broken down into simpler subtasks through temporal abstraction, 
where tasks are performed at diferent time scales [13, 38]. This 
abstraction allows for the seamless integration of intricate tasks, 
such as the precise oculomotor control needed to fxate on indi-
vidual words, into broader, more encompassing activities, such as 
comprehending a sentence while reading. Our proposed approach 
achieves this by allowing the lower-level motor control models to 
operate on a faster time scale (�� ) than the higher-level models (�� ). 

4 MODEL DETAILS AND IMPLEMENTATION 
To model the dynamics of reading while walking, we created a user 
model and a simulation environment in MuJoCo [76]. MuJoCo is 
an efcient physics simulation engine often used in RL research. It 
provides a fexible model specifcation format, making it possible to 
create simulations for a wide range of modeling problems, ranging 
from robotics to biomechanics. 

Our simulation presents a multitasking challenge where the 
simulated user (agent) reads text on an OHMD while walking on a 
predefned path, and navigates the environment by either switching 
lanes (Study 1) or controlling the walking speed (Study 4). The agent 
is rewarded for reading on the OHMD, walking, and attending to the 
environmental information properly. When training the agent, we 
want to learn an optimal policy for switching attention between the 
reading task and scanning the environment, such that the expected 
cumulative sum of gained rewards is maximized. The models were 

trained with PPO2 [70] individually, although they are evaluated 
together. 

Figure 3 shows the user model. It consists of a torso and an eye, 
with a camera embedded in the eye to mimic the feld of view ahead 
of the user. The camera has a feld of view of 90 degrees, and the 
user may perceive its environment through this camera as an 80x80 
pixel RGB-D image. We implemented ocular movement control 
by using two motors to rotate the eye horizontally and vertically. 
The user sees a grid of 3x4 cells from its point of view, simulating 
textual content presented on the OHMD. Instead of giving the user 
actual words to read, we simplify the task by replacing words with 
rectangular cells that visually signify words [10]. This bypasses the 
need to learn to recognize words when training the agent. 

Scope: After exploring diferent options, we simplifed the mul-
titasking problem by excluding detailed locomotion control and 
decided to focus on the (more critical) oculomotor control problem. 
The human walking process involves complex neuromechanical 
controls of speeds, navigation, and balance maintenance [72]. We 
collapsed these into one-dimensional translational movement and 
walking speed control, deeming this sufcient for our case. We 
represent the reading task as a sequence of eye fxations through 
a series of rectangles, where the rectangles represent words. This 
approach is based on the understanding that words can be viewed 
as separable units with clearly defned boundaries from one another 
[10]. Such simplifcation allows us to focus our model on general 
reading patterns, such as reading resumption, without getting en-
tangled in the nuanced perception of individual words. While it 
is common in natural reading behaviors to scan through and oc-
casionally skip words, we found that a linear traversal sufces to 

2Using the Stable-baselines3 [56] library 
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(a) Third person view (b) First person view (c) The two-lane path (d) The rectangle path (e) The city landscape 

Figure 3: We built a simulated environment in MuJoCo with an OHMD, a user, and signs (the red rectangle) to look at. The 
eyeball can be rotated to focus freely on either the OHMD (the black grid) or the environment. The user model can ’walk’ on 
predefned paths. Our model leverages pixel-based image inputs for training the agent’s visual attention policies, eliminating 
the need for hand-crafting complex state-action pairs across various visual scenes. This approach features a fexible simulation 
environment, demonstrated through various confgurations: (c) a two-lane path for Study 1, (d) a rectangle path for Study 4, 
and (e) a city landscape for more realistic scenarios. 

cover fundamental cases, efectively representing the base reading 
scenario with considerably less complexity. 

Furthermore, our model simplifes visual perception by limiting 
visual stimuli to those within the foveal and near peripheral view. 
This is because the primary aim of our model is to simulate how 
users switch between reading on OHMDs and interpreting envi-
ronmental signs, these tasks require a fxed gaze to process visual 
information, contrasting with the tracking of dynamically moving 
objects, which is the main function of peripheral vision. To support 
this focused approach, we have restricted the eye camera’s feld of 
view to 90 degrees in both the horizontal and vertical dimensions. 
This not only covers a substantial portion of the peripheral area, 
ensuring the inclusion of essential visual stimuli, but also allows 
for larger visual angles for objects. This aspect is crucial, given 
that our model downsamples visual observations to an 80x80 pixel 
resolution. Such a truncation and focus enhances the agent’s ability 
to perceive and process relevant visual inputs efectively, balancing 
the model’s complexity with its trainability. 

Finally, while oculomotor control has three degrees of freedom 
[1], we have designed our simulation to focus on the movements 
of a single eyeball, limiting it to horizontal and vertical movements. 
This grants the agent enough fexibility to perceive all items in the 
environment without unnecessarily complicating the model. Last, 
although humans can switch attention both voluntarily and invol-
untarily [36, 77], we only consider voluntary attention switches. 
Correspondingly, all agents’ attention switches in our simulations 
are task-driven. 

4.1 Supervisory Controller (SC) 
When using OHMDs, users must frequently switch their attention 
between the device and their environment. This is driven by various 
factors, such as safety concerns — for instance, the need to check 
for a red light to avoid jaywalking [68]; and voluntary interests — 
for instance, curiosity about a nearby sign [69]. A critical challenge 
for the agent is to learn the optimal timing for these attention 
switches, such that disruptions are minimized and the efciency of 
information gathering is maximized [39]. 

The Supervisory Controller determines how attention should 
be allocated at each long-range time step. We employ POMDP to 
model attention allocation as a sequential decision-making process, 
under uncertainty about when the agent should switch attention to 
the environment to walk properly. The attention is allocated based 
on an observation of the internal states �� = {Current task, Reading 
progress, Walking speed, Remaining timesteps}. The binary decision 
�� indicates whether the agent chooses to read on the OHMD or 
scan the environment for updates. Upon each decision, the agent 
receives a reward �� = �� × �� + �� × �� − �� × �� − �� . Our 
reward function considers both the utilities in reading and walking, 
as well as the cost caused by attention switches. It is a combination 
of positive rewards for reading �� and walking �� , as well as a cost 
component for switching attention �� and a time penalty �� : 

• �� is granted if the agent makes reading progress in the 
current step. 

• �� is related to walking, can be granted according to walking 
speed, or whether walking on a correct lane. 

Table 1: Summary of selected parameters in our model. (a) ��� refers to the fxation position’s coordinate values after saccades. 
(b) ��� refers to the probability of each word being the target last read word. As time progresses, �� rises, leading to a rise 
in ��� . The agent becomes more uncertain about the true position of the last read word. (c) �� � refers to the probability of 
observing the currently fxated word. (d) �� � represents the noise caused by the walking perturbation. 

Distribution � � 

Oculomotor ��� ∼ N(��� , ��� ) saccade’s destination coordinates 0.08 × ������� ���������[12] 
Position Memory ��� ∼ N(��� , ��� ) last read word’s index 4.5 / (1 + �� −0.5) [40] 
Word Observation �� � ∼ N(�� � , �� � ) fxated word’s index �� � × � ���� ���� [75] 

Walk Perturbation Noise �� � ∼ N(0, �� � ) 0 inferred from human data 
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• �� = �� + �� — Switching attention to the environment 
interrupts reading. To resume reading, users need to scan 
the OHMD content and try to refocus on the previously read 
position. This process costs time and users may make errors. 
�� refers to the normalized time cost in this process, and �� 
refers to the normalized error cost. 

• �� is a step-wise time penalty. 

To control the relative importance of each reward component, 
we introduce weights ��, �� , �� , for reading, walking, and at-
tention switches, respectively. A higher weight for reading results 
in the agent focusing more on the reading task and less on the 
walking task. Conversely, a higher �� encourages the agent to 
prioritize walking, which may result in the agent attending to the 
environment more often, and hence reading slower. A higher value 
for �� means the agent is less likely to switch attention to the 
environment. This reward function formulation provides fexibility 
for modelers to design agents with diferent task preferences by 
modifying the reward component weights. We further evaluate the 
model’s attention allocation behavior in Study 1, and compare the 
behavior against human data in Study 4. The detailed reward values 
are specifed in the Supplementary Material. 

4.2 Read (R) 
Our model exhibits two diferent reading behaviors depending on 
its state. If the agent is reading, it will fxate on the next word. When 
resuming a paused reading task, the agent scans words on OHMD 
to locate the last read word, infuenced by a decaying memory 
mechanism, similar to humans [83]. This concept aligns with Li et 
al.’s exploration of memory decay in smartphone menu selection 
[40]. However, unlike their uniform spacing layout, our scenario 
focused on varied text spacings on OHMDs [83]. We adopt Li et 
al.’s forgetting function concept and modify it to accommodate the 
complexities introduced by varied text layouts. 

We employ POMDP to model the reading resumption behavior 
as a sequential decision-making process, under uncertainty about 
which word is the exact word to resume reading from because of 
memory loss. Initially, we explored basic probabilistic models, such 
as spatial Gaussian distributions, to predict the gaze relocation 
position. Although these models could predict relocation errors, 
they fail to simulate the sequential process of decision-making (’Is 
this the word I’m looking for?’) and the associated time costs during 
this process. In contrast, a POMDP-based model addresses these 
aspects comprehensively. It captures not only the spatial re-entry 
position but also the subsequent gaze trajectory. 

In the POMDP formalism, the visual search is conducted based on 
an observation of the internal states �� = {Fixation word index, Belief 
of the last read word position, Remaining timesteps}. In particular, 
Belief of the last read word position conveys information of how 
likely the currently fxated word is the word the agent last read 
before switching attention to scan the environment. To model the 
belief updating process during visual search, we employ Bayesian 
inference (see [34, 35]). In our deterministic transition model, the 
belief update is � (�� +1) ∝ �(�� +1, �� , �� )� (�� ), where � (�� ) and 
� (�� +1) are the current and next state beliefs, respectively. The 
likelihood function �(��+1, �� , �� ) calculates the probability of an 
observation given the state and last action [7]. Memory decay is 

modeled by � (�� ) = ��� × ��� (�� ) + (1 − ��� ) × � (�� ), with 
��� (�� ) as the position memory for the last read word, and ��� 
(between 0.5 and 1) representing the degree of memory decay, 
inferred from human data. This approach allows for adaptable 
Bayesian belief updates to accommodate various levels of memory 
loss. The Bayesian belief update was defned as below: 

� (�� +1) ∝ �(�� +1, �� , �� )×(��� ×��� (�� )+(1−��� )×� (�� )) (1) 
The agent’s uncertainty about the last read word is modeled using 
a Gaussian distribution [5, 40]: ��� ∼ N(��� , ��� ), where ��� 
represents the probability distribution, ��� refers to the true last 
read word’s index. The uncertainty ��� rises over time, formulated 
as ��� = 1+� 

4. 
( 
5 
�) , where 4.5 is obtained from Li et al.’s work [40]. 

Given that there are no revisits to the target item (i.e., the last read 
word), we simplify �(�) to �(�) = �� −0.5 [36, 40]. �� indicates 
the time elapsed since the agent last read the word before atten-
tion switches. When scanning words, �� increases, which leads to 
memory loss and increasing uncertainty, represented by a growing 
��� . 

When resuming reading, the agent scans new words to examine 
whether they are the last read word. The belief is updated using 
the likelihood function, which we formalize as a Gaussian distri-
bution �� � ∼ N(�� � , �� � ) [42], where �� � is the probability 
of fxating on the current word given the last read word is at the 
position �� � . The standard deviation, �� � , is inferred from hu-
mans’ foveal vision size [75]. We formalize it as �� � × � ���� ���� , 
where �� � is a parameter inferred from human data. It suggests 
users’ re-entry position (�� ) based on their vague memory of the 
last read word’s location, following the practice that users are more 
likely to re-enter from words that are closer to the last read one. 
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Figure 4: The agent’s simulated reading resumption scan 
paths. When reading resumes after an interruption, the agent 
must fnd the right location in the text to continue reading. 
This fgure shows two cases. Case 1 is a successful reading 
resumption case where the agent correctly scans and selects 
the last read word, ’that’. The belief keeps increasing as the 
agent approaches the right word. Case 2 is unsuccessful. Here, 
the agent selects the wrong word because of memory loss. 
The value of the word ’to’ decreases over time when no scan 
actions are made. 

While real human users may apply complex visual sampling 
behaviors in a visual scan task, in our model, we abstract the visual 
scan into fve actions: scan by moving the fxation one word to the 
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1) left, 2) right, 3) above, 4) below, and 5) terminate the search and 
select the currently fxated word as the word previously read. We 
apply a similar reward function as Li et al. [40]. Upon each action, 
the agent receives a reward �� = −�� + �� , where �� = 0.1 is a 
time penalty to encourage the agent to quickly scan and search 
the last read word. �� is a bonus term given to the agent when it 
terminates the search. If the agent fnds the correct last-read word, 
�� = 10; otherwise, �� = −10. These rewards provide the agent 
enough incentives to select the last read word quickly. 

Figure 4 demonstrates how the agent scans words on OHMDs 
to resume reading. It shows two cases: a successful one and an 
unsuccessful one, where resumption fails due to memory loss. We 
further evaluate the model’s reading resumption performance with 
human data in Study 3 and Study 4. 

4.3 Scan (S) 
If the Supervisory Controller chooses to scan the environment, this 
model is called, and it will be active until the model terminates 
the scan. The scanning behavior is based on an observation �� = 
{Environment event index, Fixation index, Environment information, 
Remaining timesteps} of the internal states. While scanning the 
environment, the agent has three actions �� : 1) Move fxation to 
non-urgent events in the environment, 2) move fxation to the ur-
gent event in the environment, and 3) terminate the scan, allowing 
the Supervisory Controller to return to the reading task. Upon each 
action, the agent receives a reward �� = −�� + �� , where �� = 0.1 
is a step-wise time penalty to encourage the user to scan environ-
mental information quickly. The bonus term �� = 10 is rewarded 
to the agent for fxating, i.e., scanning, the urgent event in the en-
vironment, which may be a notifcation to change lanes (Study 1), 
or a sign that must be read before continuing walking (Study 4) 

4.4 Oculomotor Control (OC) 
While walking in its environment, the agent experiences dynamic 
and noisy visual scenes when viewing reading materials on the 
OHMD, similar to humans [8]. This, combined with inherent human 
ocular noises like saccadic noise [12], poses challenges to the agent’s 
oculomotor control. The agent must learn to accurately rotate its 
eyeball to counter these noises and maintain fxation on the words. 

The eyeball’s ability to rotate along horizontal and vertical axes 
enables the agent to observe words and signs in the 3D MuJoCo 
environment efciently. The eye movement is based on an observa-
tion of the external simulated environment and the agent’s "physi-
cal" manifestation �� = {Vision perception, Proprioception, Remain-
ing timesteps}. Additionally, this model receives the Read model’s 
output Target word index w that specifes a fxation target. Vision 
perception refers to the simulated user’s frst-person viewpoint cap-
tured by the eye camera. This pixel image helps the agent perceive 
both words and signs, and infer the target’s position. Proprioception 
grants the user awareness of its eyeball rotation angles. The action 
�� determines the target angles for the eye’s horizontal and vertical 
rotations, actuated by two position motors. These rotations, mir-
roring human capabilities, span a continuous space with angles up 
to 90 degrees. 

The transition function is � (�� , �� , �� +1) = � (�� +1 |�� , �� ), it de-
scribes the probability of achieving a new eye rotation target �� +1 

from a prior angle �� under the oculomotor action �� . This sim-
ulation includes human-like eye movements with stochastic el-
ements like saccadic noise [12]. For a current target �� and ac-
tion �� , the new target �� +1 follows a Gaussian distribution with 
mean at �� ’s expected result and standard deviation ��� = 0.08 × 
������� ��������� [12], where ��� represents oculomotor vari-
ance. The agent’s reward �� = −�� + ��� includes a distance-based 
shaping term �� = 0.1 × (�−10×�� − 1), with �� as the angular dis-
tance to the target, encouraging rapid fxation. A bonus ��� = 10 
is awarded for successful fxation over a fxed duration. 

Prior work demonstrated that walking-induced rotational head 
perturbations degrade users’ visual perception when reading from 
head-mounted displays [8]. To simulate this efect more realisti-
cally for OHMDs, we incorporate rotational perturbations on the 
displayed words, following Grossman et al.’s suggestion [24]. These 
perturbations, modeled on two axes (horizontal yaw and verti-
cal pitch), are represented as integrated sinusoidal waves, causing 
periodic up/down and left/right word movement. The sinusoidal 
perturbations’ amplitudes for pitch �� and yaw �� are: 

�� = �� � × (��� × sin 2� ��� � + ��� × sin 2� ��� �) + �� � 

�� = �� � × (��� × sin 2� �� � � + ��� × sin 2� ��� �) + �� � 

where �� � adjusts the intensity of the simulated perturbations 
(amplitudes) and is inferred from human data later. Additionally, 
real-world walking doesn’t produce perfect sinusoidal waves, so 
we introduce stochasticity through a noise component �� � , mod-
eled as a zero-mean Gaussian distribution [33]: �� � ∼ N(0, �� � ). 
The standard deviation �� � is inferred from human data. Other 
sinusoidal parameters are empirically based on Grossman et al. [24] 
(refer to Supplementary material). The model’s reading degradation 
due to walking, compared to human data, is elaborated in Study 2 
and Study 4. 

4.5 Locomotion Control (LC) 
This model determines the agent’s locomotion behaviors, including 
lateral lane-changing and speed control. Lane-changing is guided by 
a Locomotion instruction � from the Scan model, signaling the correct 
lane. The action �� is binary: continue in the current lane or switch. 
Upon each action, the agent receives a reward �� = −��� + ��� , 
where ��� is a cost penalizing walking on the incorrect lane, set at 
−0.1, and is 0 if the agent is on the correct lane. The bonus term 
��� = 10 is rewarded to the agent for successfully switching to or 
maintaining the correct lane. Walking speed control also follows a 
Locomotion instruction e from the Scan model, dictating the desired 
speed. Here, the action �� varies continuously between 1.0m/s and 
1.5m/s, covering normal human walking speeds [4]. The reward 
�� = ��� is a step-wise incentive, set at 0.1, for maintaining the 
expected speed. 

5 OVERVIEW OF STUDIES 
In the context of reading on OHMDs while walking, our model sim-
ulates a broad spectrum of complex cognitive processes, spanning 
from high-level attention allocation and middle-level task comple-
tion to low-level motor execution. The key research question in 
our studies was: Can our model reasonably capture human behav-
ior characteristics compared to human data? We frst conducted 
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Table 2: An overview of the four studies evaluated in this paper. 

Study Model Modelled Behaviors Evaluation Metrics Results Data 
1 Supervisory Controller Adaptive attention switches Multitasking behaviors Simulated 
2 Oculomotor Control Decreased visual perception Reading speed ratio Human vs. simulated 
3 Read Adaptive reading resumption Time cost and error rate Human vs. simulated 
4 All Models Adaptive walking and reading Attention allocation, walking and reading Human vs. simulated 

three separate studies to evaluate the contributions of the key com-
ponents of our model – Supervisory Controller, Read model, and 
Oculomotor Control. Following these, we conducted a unifed study 
to evaluate the overall model performance. The studies are specifed 
in Table 2. 

6 STUDY 1: ATTENTION SHIFTS UNDER 
DIFFERENT WALKING SPEEDS AND 
AGENTS WITH DIFFERENT TASK PRIORITY 

The objective of Study 1 is to showcase how the computationally 
rational agent adapts its policies and behaviors in response to a 
range of factors, such as cognitive constraints (such as limited atten-
tion resources), environmental conditions (such as walking speed), 
and task priorities (balancing between reading and walking). In 
this Study, the simulated agents’ task is to read on the OHMD, and 
change lanes when they observe a sign. While numerous factors 
potentially afect users’ attention switching behaviors, including 
the external environment’s complexity, risk level, and environmen-
tal settings [78], in this study, we select walking speed and task 
priorities as the two factors that we believe are both common and 
representative. 

6.1 Method 
In the simulation, we categorize the walking speed into three levels: 
fast, moderate, and slow, structured in a 3 : 2 : 1 ratio. Moreover, 
we trained three agents with diferent task priorities by confgur-
ing diferent reward weights in their reward functions (refer to 
Section 4.1 and Supplementary Material): 

• Shakespeare: This agent values the reading task the most 
among these three agents. 

• Olaf: The most cautious agent who values the walking task 
most, prioritizes walking correctly on the assigned lane. 

• Norman: The average agent, who has the most balanced 
preference for reading and walking tasks. 

The metrics included in the study are: 1) Number of attention 
switches. 2) Reading speed (words per simulation step). 3) Walking 
error rate (%): Percentage of time agent walks on the incorrect lane. 
4) Percent of reading interruption positions: start/end vs. middle of 
text lines – this metric denotes where agents interrupt their reading 
when switching attention. 

6.2 Results 
Figure 5 and Figure 6 show the simulated multitasking behaviors 
of the three agents for the diferent walking speed levels. It is 
important to note that the simulated results can signifcantly difer 
across walking speeds in certain metrics. These variations do not 
necessarily refect realistic human behaviors. However, the purpose 

Figure 5: The simulated moment-by-moment attention 
switch trajectories of three agents in Study 1, highlighting 
how agents’ strategies adapt to varying reward weights for 
the reading and walking. From top to bottom, as the reward 
weight for the walking task increases, there’s a noticeable 
increase in the number of attention switches and attention 
allocation on environmental signs, from Shakespeare to Nor-
man and Olaf. Consequently, the reading task is interrupted 
more frequently, extending the time required for its comple-
tion. 

of this study is only to showcase the model’s fexibility in simulating 
multitasking behaviors when adapting to the given rewards (task 
priority) and bounds (walking speed). 

Our study shows how attention switching behaviors adapt to 
the personal task priority. As shown in Figure 5 and Figure 6, when 
agents’ task priority switches from reading to walking, they perform 
more attention switches to the environment, resulting in slower 
reading speed and less walking errors. Moreover, when walking 
is more important, the agent interrupts their reading less in the 
middle of a sentence, and instead switches their attention to the 
environment at the start/end of a text line. As for the walking speed 
factor, faster walking speed leads to more walking errors, more 
attention switches, and slower reading speed. 

These results align with our intuitive understanding: individuals 
prioritizing walking safety over reading will naturally pay more 
attention to their surroundings to maintain environmental aware-
ness. Therefore, the walking performance may be improved. On 
the other hand, a faster walking speed results in a rapidly chang-
ing environment, increasing uncertainty and chances of missing 
information, leading to more frequent walking errors. Individuals 
need to compensate for safety by allocating more attention to their 
surroundings. However, frequent attention switches interrupt the 
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Figure 6: Simulation results for Study 1. The plots show how agents adapt their attention switching behavior to rewards 
(task priorities) and bounds (walking speed). We trained three agents: Shakespeare, Norman, and Olaf, using varying reward 
weights for the reading and walking tasks. Interestingly, less focus on reading narrowed the diference in reading interruption 
positions across agents (a). For specifc reading and walking behaviors, increasing emphasis on walking enhanced environmental 
awareness at the cost of reading performance, and vice versa (b, c, d). Furthermore, a reduction in walking speed requires fewer 
attention switches to the surroundings, enhancing reading and improving walking performance (b, c, d). 

reading, resulting in slower reading speed. Furthermore, agents who 
value reading take care in choosing where to pause their reading, 
making it easier to resume later. These results validate our model’s 
capability to simulate how agents adapt their attention switching 
behaviors to the rewards (task priority) and bounds (walking speed). 

7 STUDY 2: READING SPEED DECREMENT 
DUE TO WALKING PERTURBATIONS 

The objective of Study 2 is to assess the model’s ability to replicate 
users’ reading experiences while walking with OHMDs. Specif-
ically, it examines how walking perturbations afect readability, 
comparing the model’s predictions to actual human data. Other 
than interruptions caused by attention switches, the physical act of 
walking can also adversely afect reading experiences on OHMDs. 
Borg et al. [8] found rotational head perturbations generated by 
walking can deteriorate readability on OHMDs, leading to a degra-
dation in the reading performance. While Study 1 validates the 
model’s capability to simulate the efects of attention switches 
on reading, this study aims to evaluate its ability to simulate the 

continuous impact of walking on reading performance through 
OHMDs. While researchers have identifed various factors that 
impact readability on OHMDs, including display contrast and ex-
ternal brightness [79], the infuence of walking perturbations is 
particularly signifcant due to their consistent occurrence and close 
relationship with walking movements [8]. 

7.1 Method 
Prior work [8] focused their analysis on the efect of walking on 
reading using numerical time data rather than textual content. 
Therefore, we cannot use their data to evaluate text-reading tasks. 
In this study, we collect human data from a controlled study as 
described below: 

Participants: 12 volunteers (4 females, M = 24.8 years, SD = 2.9) 
from the university community participated in the study. They had 
normal or corrected visual and walking abilities. All participants 
were fuent in English at the university level. 

Experimental design: The study adopted a within-subject de-
sign, centering on a single independent variable, mobility, in two 
conditions: walking or standing on a treadmill. 
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(a) Static (b) Perturb to right (c) Perturb to left 

Figure 7: The MuJoCo simulation in Study 2, fgures demon-
strate how head perturbations are implemented in the sim-
ulator. (a) depicts a static scene, while (b) and (c) illustrate 
shaking efects in diferent directions. 

Task: Participants in the study were tasked with reading aloud 
while using an NReal device. Initially, a training trial was con-
ducted to familiarize participants with the task of reading through 
the NReal device while simultaneously walking on the treadmill. 
Subsequently, they engaged in two data collection trials, one for 
each of the walking and standing conditions. The order of these 
mobility conditions was counterbalanced using a Latin Square de-
sign within subjects to eliminate order efects. For safety during 
walking, participants were instructed to hold onto a table afxed 
to the treadmill throughout all trials. Each trial concluded once the 
participant fnished reading the assigned content. 

Material: The reading materials were generated by ChatGPT3 

with prompts of "University level reading materials with topics in 
culture, science, and technology". Each reading material had ap-
proximately 300 words. To ensure the quality and appropriateness 
of the reading materials, we conducted a thorough review process. 
Three co-authors carefully examined all generated texts to ensure 
they were coherent, contextually appropriate, and free from com-
plexities that could confound the readability. We further assessed 
articles using the Flesch-Kincaid Grade Level metric. The evalua-
tion revealed a consistent level of complexity, with an average score 
of 16.55 (SD = 1.64). This score indicated that the articles’ reading 
level was suitable for college students. 

Procedure: The study was conducted in a quiet room with con-
sistent indoor light to provide a consistent user experience. Once 
entering the room, participants were briefed about the study pro-
cess. They were also familiarized with the OHMD and how to walk 
safely on the treadmill, then followed by the three trials. The entire 
experiment lasted for approximately 10-15 minutes. This study has 
received approval from the university’s Institutional Review Board 
(IRB) for human subjects research. 

Apparatus: Participants wore the NReal Light glass [80] (weight 
= 106 grams, FOV = 52-degree diagonal, resolution = 1920×1080 
pixels) as the OHMD device. In the air casting mode, its screen is 
115 inches diagonal at 3 meters such that participants can read com-
fortably and clearly. The words displayed on NReal were mirrored 
from Google slides on a Huawei P40 [28], which is connected to 
the NReal by a wire. Users could easily hold the phone and use a 
sliding gesture to swap the digital content displayed on the NReal 
device. Participants walked on a Spirit ftness [17] treadmill, which 

3https://chat.openai.com/ 

has a fat table on the front, and supports a speed range from 0.8 
km/h to 6.0 km/h. The use of a treadmill was a deliberate control 
choice designed to isolate head perturbation’s efect on readability, 
allowing us to gather clean data on the relationship between natu-
ral head movements and reading performance, following the prior 
work [8]. 

Measure: We measured participants’ reading speed ratio by com-
paring their reading speed while walking to that while standing. 
Participants were asked to read aloud to ensure clear recognition 
and pronunciation. This method ensures participants actively en-
gaged with the reading material, and accurately refects the reading 
performance without complex skip-reading or similar strategies 
[83]. Reading speed was determined by dividing the number of 
words read by the elapsed time. To evaluate the reduction in read-
ing speed, we employed the reading speed ratio, which normalizes 
for time and ease of word recognition, thereby reducing the impact 
of individual diferences in reading speeds. 

OHMDs’ text oscillations caused by head perturbations are for-
malized as integrated noisy sinusoidal waves (as described in Sec-
tion 4.4), and simulated in MuJoCo as illustrated in Figure 7. We 
estimated the agent’s reading speed both in the standing scenario, 
where there were no perturbations applied, and in the walking 
scenario when perturbations were applied. The evaluated metric is 
the ratio of reading speed under the walking condition compared 
to standing. We obtained the simulated data from the trained RL 
agent, and compared the simulated data against human data. 

7.2 Results 

Reading Speed ratio
0%

50%

100%
94.38
(4.47)

94.12
(4.45)

Human Data
Simulated Data

Figure 8: The average reading speed ratio (SD), comparing 
walking to standing conditions in Study 2 – after the param-
eter inference with 500 repetitions of leave-half-user-out 
cross-validation. 

To demonstrate our model’s fexibility and alignment with hu-
man data, we used parameter inference to tune the model parame-
ters with human data. Following prior work by Li et al. [40], we frst 
separated the human data into two parts: a parameter-inference 
dataset and a testing dataset. We randomly sampled 50% of the 
human data as the parameter-inference dataset, which was used to 
estimate the parameters for the walking perturbation noise model 
described in Section 4.4, and the remaining 50% data as the testing 
dataset. We used grid search to optimize the two parameters �� � 
(range: [0, 1], step size: 0.01) and �� � (range: [0, 0.015], step size: 
0.001) based on the reading speed ratio in the parameter-inference 
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dataset. The optimal parameter was determined by minimizing the 
sum of the mean absolute error for the ratio. We repeated the same 
procedure for 500 times. It is worth noting that our model’s RL 
training phase did not incorporate human data. Instead, the policy 
was learned through the agent’s interactions with the environment, 
where the parameters to be tuned were sampled randomly from 
their respective ranges. This approach resulted in a policy that is 
applicable across a wide range of parameter values, which were 
then fne-tuned in the parameter inference stage. The purpose of 
this fne-tuning was to align our model more closely with average 
users’ behaviors. 

Figure 8 shows the comparisons between human testing datasets 
and simulated results over 500 repetitions of leave-half-out cross-
validation. The results indicate that the reading speed ratio of our 
simulated agent corresponds to the reading speed ratio of human 
participants. As the ratios may not be normally distributed (Shapiro-
Wilks test provides W=0.993, p=0.0257 for human data, and W=0.981, 
p<0.001 for simulated data), we used a non-parametric permutation 
test to evaluate the null hypothesis that the means of these ratios 
are equal. The test indicates that the null hypothesis cannot be 
rejected (statistic=0.00254, p=0.365). This confrms our model’s 
ability to simulate the behavior observed in human participants, 
wherein walking-induced head perturbations impair visual percep-
tion, leading to a reduced reading speed compared to when standing. 
This high-fdelity replication is achieved by simulating an agent 
walking in the simulator, where its pixel-based visual perception is 
realistically disrupted by the head movements. 

8 STUDY 3: READING RESUMPTION 
PERFORMANCE ACROSS DIFFERENT 
OHMD TEXT LAYOUTS 

Study 3 has three objectives. First, it assesses the model’s accuracy in 
simulating reading resumption afected by line spacing in OHMDs, 
compared to human reading resumption data. Second, it explores 
the model’s predictive capabilities for user behavior in novel design 
conditions without relying on human data. Third, the study involves 
ablation studies to understand the contributions of specifc modules 
within our model to prevent unnecessary model complexity. While 
design factors such as font size, text color, and character count per 
line are undoubtedly important, we focus on the line-spacing factor 
due to its crucial impact on reading performance in the context of 
reading on OHMDs while walking [61, 83]. 

8.1 Method 
The reading resumption task dataset from [83] comprises obser-
vations from 12 participants. Participants were asked to read on 
OHMDs while walking in an area where signs were attached to 
fxed locations on the walls. Participants were required to read the 
content of these signs as they approached them. After glancing up 
at the sign, participants resumed the reading task on OHMDs by 
scanning OHMD words to locate where they left of. Two reading 
resumption metrics are evaluated: time cost and error rate. The time 
cost denotes the duration from the start of the visual scan to the 
selection of a word. The error rate is the ratio of erroneously chosen 
left-of words relative to the total words read. The two metrics were 

measured across three text layouts, each having a standard font 
size of 30�� : 

• L0: The interline spacing is 0�� (no space left between text 
lines). 

• L50: The interline spacing is 50�� . 
• L100: The interline spacing is 100�� . 

Figure 9: Three text layouts in Study 3. The white sphere 
stands for the agent’s eyeball, and the yellow-ray represents 
the agent’s current line of sight. Now the agent is reading the 
second word (rectangle). 

The reading resumption behavior is modeled as a sequential word 
scan process with a memory module, where the belief of the left-of 
word’s position decays over time (as described in Section 4.2). In the 
reference study [83], the exact elapsed time between participants’ 
switching their attention away and back to OHMD words was short 
and not specifed in the dataset. Given this, we assumed it to be 
constant and assigned it as 1 second. Hence, the actual memory 
decay happens when the agent is scanning OHMD words to resume 
reading. We modeled the three text layouts – L0, L50, and L100 – 
in MuJoCo, and presented them to the agent from a distance of 3 
meters (as shown in Figure 9), mirroring the study setup in [83]. 
During the simulation, we randomize the left-of word’s position for 
the agent to locate. We then record the time taken from the onset 
of the agent’s visual scan to its conclusion upon word selection. 
The error rate is calculated as the word-wise distance between the 
word selected by the agent and the actual target word, divided by 
the total number of words read. 

8.2 Results 
8.2.1 Reading Resumption Time Cost And Error Rate: Pa-
rameter Inference. To evaluate our model’s alignment with hu-
man data, we applied the leave-half-out cross-validation as de-
scribed in Section 7.2. We used grid search to optimize the two 
parameters ��� ([0.5, 1], step size of 0.05) and �� � ([1, 5], step 
size of 0.5) from the reading resumption model based on the read-
ing resumption time cost and error rate in the parameter inference 
dataset. The optimal parameters were determined by minimizing 
the sum of the mean absolute error for both normalized reading re-
sumption time cost and error rate across three text layouts (i.e., L0, 
L50, L100). For visualization, we proportionally scale the simulated 
data to the human data for each validation. We repeated the same 
procedure for 500 times. 

Figure 10 shows comparisons between the human data and sim-
ulated results across the three text layouts over 500 repetitions of 
leave-half-out cross-validation. The average RMSE of reading re-
sumption time cost is 0.58s, and 3.03% for the error rate. As Shapiro-
Wilks tests indicated that our simulated model’s outputs were not 
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(a) Human vs. simulated reading resumption time (second) across three 
OHMD layouts 

(b) Human vs. simulated reading resumption error rate (%) across three 
OHMD layouts 

Figure 10: Comparison of human data against simulated data with and without PI, PMM, or RPM in Study 3 – the average 
time and error rate (SD). When the model is intact (with PMM and RPM), it produces an average RMSE of 0.58� for reading 
resumption time and 3.03% for reading resumption error rate across three text layouts. When the model is without PMM (or 
RPM), the model shows a larger discrepancy and fails to capture the trend compared to human data, and produces higher 
RMSE of 1.12� (or 1.11�), and 13.63% (or 18.51%). The model without parameter inference (PI) produces less accurate predictions 
compared to that with PI. 

normally distributed, we used non-parametric Kruskal-Wallis tests 
to evaluate whether there were signifcant diferences between lay-
outs. Kruskal-Wallis tests indicated that both the time costs and 
error rates in diferent layouts were signifcantly diferent (H=570.8 
and p<0.001 for time costs, and H=753.5 and p<0.001 for error rates). 
Post-hoc Dunn’s tests revealed that all layouts in both metrics were 
signifcantly diferent (p<0.001 for all layouts when corrected for 
multiple comparisons). Hence, we could conclude that the behav-
ior produced by our model replicates the trend seen in human 
data, where time costs and error rates decrease as the line spacing 
increases. 

The parameter inference (PI) method was employed to more 
closely align our simulation results with the behaviors of aver-
age users. To further demonstrate our model’s capacity to predict 
user behaviors without any human data calibration, we conducted 
tests using default parameters for ��� and �� � , as illustrated in 
Figure 10. The middle bar in the fgure (labeled ’Simulated Data: 
without PI’), indicates that without parameter inference using hu-
man data, the model efectively captures the trends across layouts. 
While the average simulation results deviate slightly more from hu-
man data, denoted by the mean values, the model refects the trends 
in both resumption time cost (Kruskal-Wallis H=74.6 and p<0.001) 
and error rate (H=19.8 and p<0.001). These results demonstrate that 
our model is capable of generating simulations that conform to hu-
man behavior, even when not explicitly calibrated with human data, 
ofering the potential for predictions in scenarios lacking human 
data. 

8.2.2 Ablation Studies. To the best of our knowledge, no existing 
models have been designed to simulate users’ reading resumption 
behaviors using OHMDs. Given this novelty, there is no natural 
baseline model to compare against. To gain a deeper understanding 
of the critical components in our model, we conducted ablation 

studies with two primary goals: frst, to evaluate the impact of model 
components whose efectiveness might not be immediately obvious 
or observable; and second, to assess the unique, innovative aspects 
of our model. With these objectives, we conducted ablation studies 
on the Position Memory Module (PMM) and Re-entry Position 
Module (RPM). As described in Section 4.2, the PMM characterizes 
how users progressively forget their last reading position over 
time during the visual search, and the RPM characterizes how a 
user selects a re-entry word from the approximate area where 
they stopped reading. We conducted two distinct ablation studies 
to separately assess the contributions of the PMM and RPM to 
the overall model. For the PMM, we set its weight ��� to 0 in 
the formulation. Thus now the Bayesian belief update changes 
from Equation 1 to � (��+1) ∝ �(�� +1, �� , �� )� (�� ). For the RPM, 
we replaced its Gaussian distribution with a uniform distribution. 
Without PPM, an agent’s belief remains static during the visual 
search since its memory does not decay over time; without RPM, 
the agent’s belief is unafected by text line spacings because it does 
not account for words’ spatial position diferences. 

With all other components kept constant, we retrained the two 
models and evaluated their performance using the same parameters 
generated for the abovementioned leave-half-out cross-validation. 
The results, plotted in Figure 10, show a dramatic degradation in 
performance. Without PMM, RMSE increases to 1.12� for time cost 
and 13.63% for error rate. Apart from the large deviation from 
human data, the ablation results fail to produce the expected de-
scending trend across diferent layouts. Similarly, without RPM, 
RMSE increases to 1.11� for the time cost and 18.51% for the error 
rate, accompanied by large deviations from the human data. These 
performance deteriorations highlight the crucial roles of both PMM 
and RPM in our model. Without them, the agent cannot develop 
efective visual searching strategies that balance time efciency and 



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Bai, et al. 

accuracy, and fails to replicate human reading resumption behaviors 
across layouts. 

9 STUDY 4: READING ON OHMDS WHILE 
WALKING 

Prior work has indicated that reading on OHMDs while walking 
adversely impacts both activities, leading to frequent attention 
switches, interruptions in reading, and slower walking [83]. The 
goal of Study 4 is to evaluate whether our model can accurately 
simulate the efects of such multitasking, in alignment with human 
data from a study by Zhou et al. [83]. 

Figure 11: Comparison of Study 4’s settings: On the left is the 
agent’s simulated frst-person perspective; on the right is a 
frst-person-perspective screenshot from the human user via 
Oculus Casting [52]. Both scenarios involve the same task of 
navigating a rectangular path and reading texts on OHMDs, 
while also paying attention to environmental cues. 

9.1 Method 
Since prior work did not provide data on attention allocation and 
walking speed control, we replicated their experiment while track-
ing participants’ visual attention allocation and walking speeds. 
The design and methodology of our study are detailed as follows: 

Participants: Twelve university students (5 females, 7 males, M: 
26.25 years, SD: 2.49) participated. All had normal or corrected-to-
normal vision and walking abilities and were profcient in English. 

Experimental design: The study adopted a within-subject de-
sign, centering on a single independent variable: the vertical text 
spacing in OHMDs, specifcally at level L100. This choice was in-
formed by prior research demonstrating that L100 is most efective 
for reading on OHMDs while walking [83]. 

Task: To determine preferred walking speed, participants were 
asked to walk twice along a predefned rectangular path. Then, 
to determine standard reading speed, they were asked to read an 
article on the OHMD while standing. After these, participants un-
dertook a task that involved walking, reading, and attending to 
environmental signs. This 2-round rectangular path had eight signs 
(four per round), each displaying diferent information. During 
the task, participants were asked to read both texts on OHMDs 
and signs aloud, quickly and accurately while walking, ensuring 
comprehension. They were allowed to stop and resume walking 
as necessary. Each trial started at the start line and ended after 
completing the two rounds of walking, regardless of whether they 
fnished reading the text on OHMD. 

Material: To avoid potential compounding efects, we used four 
English articles from the AceReader application, identical to those 
in Zhou et al.’s work. These articles all had the same difculty level 
of 8th grade, ensuring ease of readability for all participants. The av-
erage article lengths were 360 words (SD=11.1). The environmental 
signs used were also the same as in the prior study. 

Procedure: We frst provided an example task to familiarize 
participants with the experiment as part of the training session. In 
the actual data collection experiment, each participant completed 
three trials, with reading and sign materials randomized and unique 
for each trial. The study has received approval from the university’s 
Institutional Review Board (IRB) for human subjects research. 

Apparatus: The Meta Quest Pro [45] was employed not only as 
the digital text display, but especially for data collection, including 
eye-tracking and motion tracking. Text was displayed with a 30-
pixel font size and 100-pixel interline spacing as suggested by Zhou 
et al. [83]. Participants pressed buttons on the headset’s controller 
to turn pages. 

Measures: Metrics are categorized into three sections: 1) Atten-
tion allocation: where and when attention was allocated to envi-
ronmental signs or OHMDs. Specifcally, attention allocation on 
the physical route, and the percentage of time spent focusing on 
these signs (denoted as attention allocation on signs). 2) Walking: 
percentage of the preferred walking speed (%PWS). 3) Reading: the 
reading speed ratio (same as in Study 2) and the reading resumption 
time cost and error rate (same as in Study 3). 

9.2 Results 
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Figure 12: The average multitasking metrics (SD) in Study 4 – 
after 500 repetitions of leave-half-user-out cross-validation. 

To evaluate our model’s alignment with human data, we applied 
the leave-half-user-out cross-validation and grid search to optimize 
four parameters – �� ([0, 1], step size of 0.01), �� � ([1, 1.5], step 
size of 0.05), ��� and �� � (same as in Study 3) – with the collected 
human data. The optimal parameters were determined by minimiz-
ing the sum of the mean absolute error for metrics, including the 
percentage of attention allocation, reading speed ratio, percentage 
of preferred walking speed (%PWS), reading resumption time cost 
and error rate. 
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(a) Simulated vs. human attention allocation physical route trajectory (b) Simulated vs. human attention allocation temporal trajectory 

Figure 13: Comparisons of moment-by-moment attention allocations between simulation and human data in Study 4. (a) 
Physical route trajectories contrast the attention patterns of simulated agents and human users, where human data was 
captured by the motion tracker in the headset. Larger dots indicate longer viewing times at a position. With a constant sampling 
rate of 1fps, sparse dots suggest faster movement. (b) Temporal attention allocation trajectories display the distribution of 
attention over time for both simulated and human data. These demonstrate the model could efectively simulate human’s 
tendency to decelerate or halt for sign reading, and attention switches between environmental signs and OHMD reading texts 
over time. 

Figure 12 shows the comparison between the human data and 
simulated results over 500 repetitions of leave-half-user-out cross-
validation. Our focus is on accurately capturing human multitasking 
behaviors in three key aspects: attention allocation, walking, and 
reading. To assess attention allocation to environmental signs, we 
measured the percentage of attention allocation to signs. The im-
pact on reading is evaluated through the reading speed ratio (the 
percentage of preferred reading speed), along with metrics for read-
ing resumption time cost, and error rate. These factors consider the 
infuence of both walking and attention switches as discussed in 
Study 2 (Section 7.2) and Study 3 (Section 8.2). For walking, we an-
alyzed the efect of multitasking using the percentage of preferred 
walking speed (%PWS), following the methodology of Zhou et al.’s 
work [83]. 

Similar to the approach in Section 7.2, we used permutation tests 
to evaluate the null hypotheses that the means of our simulated met-
rics match the means of human metrics. The null hypothesis cannot 
be rejected for reading resumption time cost (statistic=0.016, p=1), 
error rate (statistic=0.009, p=0.18), attention allocation (statistic=-
0.001, p=0.13), and percentage of preferred walking speed (%PWS; 
statistic=-0.0003, p=1), suggesting that our model closely replicates 
human behavior. However, the null hypothesis should be rejected 
for the reading speed ratio (statistic=0.024, p<0.001; all reported 
p-values have been Bonferroni corrected for multiple comparisons), 
despite the average metric being close to human data. This discrep-
ancy likely arises because computational rational models aim to 
represent average human behaviors as noted by Oulasvirta et al. 
[54]. However, real human data often exhibits considerable vari-
ability, which is beyond the scope of this approach to capture. The 
results from our study indicate that the model efectively simulates 
user behaviors in the realistic task of reading while walking. It 
captures key phenomena such as users slowing down to counter-
act reading difculties caused by walking, as well as the dynamics 

of attention switching and the subsequent resumption of reading 
through visual search processes. 

Figure 13 further showcases comparisons of moment-by-moment 
attention allocation trajectories for simulated and human users, cap-
tured through spatial and temporal dimensions. This comparison 
exemplifes our model’s ability to sequentially simulate human mul-
titasking behaviors, including attention distribution and locomotion 
control. 

10 DISCUSSION 
This paper has shown that hierarchical supervisory control can 
efectively simulate a number of key dynamics in interacting with 
OHMDs. The model generates behaviors by estimating the optimal 
policy that maximizes rewards under its beliefs about the world and 
its internal capacities. Based on deep reinforcement learning, our 
model distinguishes itself in simulating human behaviors within 
complex state spaces. It adeptly interprets pixel-based visual inputs, 
which is crucial for guiding users’ cognitive processes in dynamic 
activities such as reading on OHMDs while walking. This approach 
not only achieves high fdelity simulation but also efectively cap-
tures the adaptability of users during interactions. By modeling 
the intricate interplay of oculomotor control and locomotion con-
trol, we successfully replicated the following empirical phenomena 
in the context of reading on OHMDs while walking: 1) Walking-
induced head perturbations decrease readability and lead to reading 
speed decrease on OHMDs, 2) Improved reading resumption perfor-
mance with increased OHMD text spacings, evidenced by reduced 
time costs and error rates, 3) The tendency of users to stop near 
static environmental signs for reading, and 4) A trade-of between 
walking speed and reading ease, with users preferring to slow down 
to minimize the impact of head perturbations and enhance their 
reading experience. 
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Figure 14: The predicted normalized reading resumption time 
and error rate across six layouts. L25, L75, and L125 were 
not validated in the empirical work. The intersection point 
between L100 and L125 indicates an optimal layout that min-
imizes both users’ reading resumption time cost and error 
rate. 

We posit that the model could serve as a useful tool to help design 
more usable and safe OHMD interactions. For example, our model 
allows researchers to derive quantitative predictions about OHMDs’ 
interface designs with much fner granularity. For instance, Zhou 
et al. [83] tested three text layouts using a coarse interval of 50�� . 
In contrast, our model allows explorations of fner layout nuances, 
such as 25�� intervals with confgurations that were not previously 
tested. This enables a more comprehensive investigation into opti-
mal layout confgurations, potentially identifying an ideal layout 
between L100 and L125 as shown in Figure 14, a possibility sug-
gested but not empirically confrmed by Zhou et al. Furthermore, 
our model can simulate various realistic 3D environments, extend-
ing beyond the simplifed 2D spaces often used in previous research. 
This feature is crucial for studying visual attention allocation when 
using OHMDs in diverse scenarios, like navigating a busy street 
or a quiet rural path. The integration of oculomotor control and a 
pixel-based visual perception operating in MuJoCo enhances this 
realism. Another key advantage of our model is its potential to 
predict optimal moments when users should switch their attention 
to the environment, informing the design of adaptive OHMD inter-
faces. This could be particularly useful in timing the presentation of 
digital content to minimize its interference with tasks like walking. 
While current research in this domain often relies on deep learning 
methods [11], our model ofers a more interpretable alternative 
with little dependence on human data. 

11 LIMITATIONS AND FUTURE WORK 
In Study 1, the lane-changing scenario represents an efective model 
for exploring attention switches in response to environmental stim-
uli. While this scenario serves as a foundational example, we ac-
knowledge its limitations in capturing the full complexity of real-life 
interactions. Future work could expand upon this by incorporating 
more realistic tasks, such as navigating a virtual cityscape rendered 
in MuJoCo. 

Our evaluation methodology primarily utilized aggregated met-
rics, following established conventions in prior research [12, 34, 

35, 40, 41]. While our model is capable of generating moment-by-
moment predictions (as shown in Figure 5 and 13), it was primarily 
designed to capture average behavioral trends over time. Recog-
nizing this limitation, future work should enhance the model by 
incorporating additional parameters, allowing for a more detailed 
moment-by-moment evaluation. 

Apart from those, our work incorporated several assumptions 
that can be revisited to further improve and extend the model. First, 
a more detailed neuromechanical locomotion control could be added 
to simulate human gait and speed control more accurately. Second, 
the rotating eyeball enables the agent to process symbolic words 
or environmental cues as rectangular visual objects by fxating on 
them until surpassing a threshold. However, this abstracted vision 
falls short of real reading, where words have diverse shapes and 
actual semantic meanings. Moreover, we do not presently process 
the environment to react to it. Future work could enhance visual 
perception by using general-purpose segmentation methods to 
detect, recognize, or react to diferent objects in the environment. 

12 CONCLUSION 
In conclusion, we introduce a computationally rational model that 
simulates the human multitasking behaviors of reading on OHMDs 
while walking. The model, grounded in the theory of boundedly 
optimal control, utilizes POMDPs to represent human behaviors as 
sequential decision-making processes, and learns policies through 
reinforcement learning. To manage the complexity of modeling 
multitasking with high fdelity, we implemented a hierarchical RL 
structure consisting of supervisory control, subtask management, 
and motor control. Across four studies, we evaluated the model’s 
overall performance and the efcacy of its key components. The 
results afrm its capability to replicate users’ key multitasking 
behaviors, especially attention allocation, reading dynamics, and 
walking behaviors. This model, therefore, ofers a useful foundation 
for guiding future research. 
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