
GPTVoiceTasker: Advancing Multi-step Mobile Task Eficiency
Through Dynamic Interface Exploration and Learning

Minh Duc Vu Han Wang∗ Zhuang Li
dustin.vu@csiro.au han.wang@monash.edu zhuang.li@monash.edu
CSIRO’s Data61 Monash University Monash University

Melbourne, Australia Melbourne, Australia Melbourne, Australia

Jieshan Chen Shengdong Zhao Zhenchang Xing
jieshan.chen@data61.csiro.au City University of Hong Kong CSIRO’s Data61 & Australian

CSIRO’s Data61 Hong Kong, China National University
Sydney, Australia shezhao@cityu.edu.hk Canberra, Australia

zhenchang.xing@data61.csiro.au

Chunyang Chen†

Technical University of Munich &
Monash University
Heilbronn, Germany

chun-yang.chen@tum.de

Figure 1: GptVoiceTasker provides an intuitive method for automating complex commands on smartphones during physically
demanding activities, such as cooking. It automatically explores step-by-step interactions to complete unprecedented tasks and
uses the saved information to accelerate the automation process for tasks that have been previously encountered.

∗Minh Duc Vu and Han Wang contributed equally.
†Chunyang Chen is the corresponding author. Virtual assistants have the potential to play an important role in

helping users achieves diferent tasks. However, these systems face

This work is licensed under a Creative Commons Attribution International
4.0 License.

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0628-8/24/10
https://doi.org/10.1145/3654777.3676356

ABSTRACT

https://orcid.org/0000-0002-4798-8701
https://orcid.org/0000-0001-7862-6677
https://orcid.org/0000-0002-9808-9992
https://orcid.org/0000-0002-2700-7478
https://orcid.org/0000-0001-7971-3107
https://orcid.org/0000-0001-7663-1421
https://orcid.org/0000-0003-2011-9618
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3654777.3676356
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3654777.3676356&domain=pdf&date_stamp=2024-10-11

UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA Vu et al.

challenges in their real-world usability, characterized by inef-
ciency and struggles in grasping user intentions. Leveraging re-
cent advances in Large Language Models (LLMs), we introduce
GptVoiceTasker, a virtual assistant poised to enhance user ex-
periences and task efciency on mobile devices. GptVoiceTasker
excels at intelligently deciphering user commands and executing
relevant device interactions to streamline task completion. For
unprecedented tasks, GptVoiceTasker utilises the contextual in-
formation and on-screen content to continuously explore and ex-
ecute the tasks. In addition, the system continually learns from
historical user commands to automate subsequent task invoca-
tions, further enhancing execution efciency. From our experiments,
GptVoiceTasker achieved 84.5% accuracy in parsing human com-
mands into executable actions and 85.7% accuracy in automating
multi-step tasks. In our user study, GptVoiceTasker boosted task
efciency in real-world scenarios by 34.85%, accompanied by posi-
tive participant feedback. We made GptVoiceTasker open-source,
inviting further research into LLMs utilization for diverse tasks
through prompt engineering and leveraging user usage data to
improve efciency.

CCS CONCEPTS
• Human-centered computing → Interaction techniques; Smart-
phones; Natural language interfaces; Sound-based input / output.

ACM Reference Format:
Minh Duc Vu, Han Wang, Zhuang Li, Jieshan Chen, Shengdong Zhao,
Zhenchang Xing, and Chunyang Chen. 2024. GPTVoiceTasker: Advancing
Multi-step Mobile Task Efciency Through Dynamic Interface Exploration
and Learning. In The 37th Annual ACM Symposium on User Interface Software
and Technology (UIST ’24), October 13–16, 2024, Pittsburgh, PA, USA. ACM,
New York, NY, USA, 17 pages. https://doi.org/10.1145/3654777.3676356

1 INTRODUCTION
The advancements in voice control technology have sparked a new
wave of innovation, driving the exploration of its potential in trans-
forming smartphone interactions [31, 32]. With the integration of
voice control, users can efortlessly navigate through various appli-
cations, compose messages, and even initiate tasks like checking
the weather or playing a video on YouTube [67]. This natural mode
of interaction not only saves time but also promotes a hands-free
experience, allowing individuals to engage with their smartphones
in situations where manual input operations are impractical or in-
convenient [44, 80] (refer to Figure. 2 illustrating a user engaged in
gym activities). Moreover, the success stories of widely recognized
voice assistants like Google Voice Assistant [4] and Siri [2] have
further propelled the adoption of voice-based interactions, inspir-
ing researchers and developers to delve deeper into its capabilities
and refne its usability for an even broader range of users.

Developing autonomous voice-controlled assistants involves ad-
dressing various challenges that impact the usability of these sys-
tems [50]. Current industrial products (such as Siri and Google
Assistant) do not provide a universal approach as they require app
developers to explicitly defne a narrow set of voice-supported ac-
tions within the code. For instance, while those voice assistants
fully support searching for videos on YouTube, other YouTube fea-
tures such as accessing video history is unavailable. This results in

a disjointed and often unfnished experience for users as they can-
not rely on voice interactions to fully control their smartphone. In
addition, these assistants often struggle to comprehend commands
when users’ inputs are unclear or do not align with the predefned
patterns [23, 24]. This lack of understanding further impacts the
overall utility of the voice-controlled systems. Furthermore, app
developers face the challenge of anticipating and programming an
extensive variety of potential intents, a task that is both complex
and limiting in the scope of voice assistant capabilities.

Recently, Large Language Models (LLMs) have brought a par-
adigm shift in natural language processing (NLP), demonstrating
remarkable capabilities in tasks like reading comprehension, transla-
tion, and text completion [8]. The advent of Few-Shot Learning has
further amplifed the capabilities of LLMs, enabling them to quickly
adapt to new logical reasoning tasks with minimal examples. This
versatility and efciency in managing various conversational inter-
actions without the need for extensive retraining ofer a ground-
breaking approach, obviating the need for task-specifc models and
extensive datasets [57]. In the context of mobile assistants/agents,
the integration of LLMs to comprehend user commands and inter-
face with mobile UIs has gained traction [13, 53, 68, 72, 77]. Ama-
zon’s integration of LLMs into Alexa represents a signifcant step
in enhancing voice assistants [20]. Their primary focus has been
on improving Alexa’s ability to understand users’ needs more accu-
rately and to control other devices more efectively. But it’s not clear
how Alexa can help with smartphones users and if the assistant is
optimized with mobile UIs. Some research in this area concentrates
on translating mobile GUIs into text, relying on LLMs to under-
stand the context and predict interactive screen elements [68, 72].
However, this method sometimes struggles with the extraction of
irrelevant GUI elements or fails when the command does not di-
rectly relate to the current screen. Other UI automation tools for UI
testing explored enhancing LLMs with image processing capabili-
ties, such as those found in GPT-4v [77]. While this approach shows
a higher success rate, it is hampered by longer processing times
and increased costs, which can negatively impact user experience
in real-time systems like voice assistants.

This paper introduces GptVoiceTasker, a novel voice assistant
that automates multi-step unprecedented tasks by dynamically ex-
ploring app interface and accelerate similar tasks through prior
usages. Drawing inspiration from the conventional record-and-
replay approach [38, 41], GptVoiceTasker is designed to learn GUI
transformations as users navigate through apps. Instead of sim-
ply transmitting live UI information, GptVoiceTasker captures
information of the current UI as the user interacts with the app,
storing this data in a backend database as known knowledge to
the system. Whenever a user command is issued, GptVoiceTasker
cross-references the new executing task with this stored knowl-
edge to make informed decisions. This method allows reproduction
of tasks for similar future requests, enhancing task efciency and
accuracy. If a user command references a unprecedented feature,
GptVoiceTasker will step-by-step explore and record the naviga-
tional path to achieve the feature. Our system achieves this by
advanced prompt engineering techniques to ensure a precise un-
derstanding of user commands without extensive model training.
GptVoiceTasker efectively bridges the divide between natural lan-
guage commands and interactive mobile tasks, enabling seamless

https://doi.org/10.1145/3654777.3676356

GPTVoiceTasker: Advancing Multi-step Mobile Task Eficiency Through Dynamic Interface Exploration and Learning UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA

automation of everyday tasks that include actions like scrolling,
tapping, and text input purely via voice commands.

We validated the technical contributions of GptVoiceTasker by
evaluating i) the ability to parse user commands into executable
actions, ii) the ability to complete multi-step tasks given one com-
mand, and iii) the ability to streamline saved tasks. The command
parser achieved over 90% accuracy on a human command dataset
collected from the user study. GptVoiceTasker also achieved 85.7%
success rate in completing human-collected multi-step tasks. Our
automated execution achieved 82.7% success rate for direct match
tasks and 72.0% success rate for tasks with diferent parameters.
To validate the usability of GptVoiceTasker, we conducted a user
evaluation with 18 participants, each completing a set of tasks
using GptVoiceTasker and two state-of-the-art baselines. We col-
lected the time taken to complete each task, as well as quanti-
tative and quality feedback from users. The results showed that
GptVoiceTasker accelerated the tasks by 34.85% and received pos-
itive feedback regarding usability.

To summarize, the contributions of this paper include:

• Development of GptVoiceTasker, a voice assistant that har-
nesses the capabilities of LLMs to streamline the automation
of multi-step tasks by predicting the most optimal step on
each individual screen.

• A graph-based local database design that automates the
recording and retrieval of personal app usages, enhancing
task execution efciency for virtual assistant interactions.

• Conducting a user evaluation to validate the efectiveness
of our approach, along with empirical fndings on system
limitations and considerations for voice assistant design.

• GptVoiceTasker1 is open-sourced so that anyone can use
and continue to improve the system.

2 BACKGROUND & RELATED WORKS

2.1 Voice Control & Automation on Mobile
Devices

Recent advancements in Natural Language Understanding (NLU)
have signifcantly enhanced the development of voice assistants
across various platforms, including ubiquitous systems [6, 36] and
home appliances [55].

An early milestone in smartphone voice control interfaces was
JustSpeak, which harnessed Google’s Automatic Speech Recogni-
tion (ASR) to record user commands and introduced innovative
utterance parsing techniques [80]. Subsequently, the Smart Voice
Assistant expanded on JustSpeak’s capabilities by enabling users
to manage calls and SMS through voice commands [9]. However,
these initial approaches, foundational as they were, encountered us-
ability issues stemming from rigid language parsing heuristics and
limited use cases, which spurred the need for further development
of smartphone virtual assistants.

In recent years, signifcant advancements in language parsing
capabilities have been achieved through deep learning models. SA-
VANT leveraged Dialogfow as a conversational agent to extract
user intent from utterances [3], while DoThisHere employed the

1https://github.com/vuminhduc796/GPTVoiceTasker

pre-built Almond language model to enable voice control for re-
trieving and setting UI contents in Android [78]. Google released
Voice Access [1], aimed to replace manual interactions with voice
command, which has over 100 millions downloads on Google Play
Store. Moreover, there are Firefox Voice, an open and extensible
web-based voice assistant with speech-to-text engine [12], and
Talk2Care, which leverages LLMs to facilitate communication be-
tween healthcare providers and older adults [79]. Additionally, Just
Speak It has focused on minimizing cognitive load during eyes-free
text editing with a smart voice assistant [26], while GazePointAR
uses context-aware multimodal inputs for pronoun disambiguation
in augmented reality [39]. Voicify [67] introduced VoicifyParser, an
advanced deep learning approach for parsing user commands into
on-screen interactions. However, the interaction paradigm with
these existing approaches remains somewhat unnatural, requir-
ing users to issue precise machine-like instructions, such as “Press
save button”. This limitation means that they may struggle to fully
comprehend high-level user intentions, such as “I want to save this
note”. We propose GptVoiceTasker to address these challenges
and revolutionise the voice-based interactions between human and
software systems. Our solution leverages the capabilities of LLMs
to map high-level user intentions to executable actions, enabling
on-screen interactions through intention-based voice commands.
This approach seeks to accommodate the fexibility and natural lan-
guage of human commands, ushering in a new era of user-friendly
assistive tools.

Research has also delved into voice command interfaces for au-
tomating smartphone tasks, often categorized as programming-by-
demonstration tools [3]. These systems generally utilize a record-
and-replay strategy, where the user records a series of actions
to complete a task and later triggers that sequence with a voice
command. SUGILITE [41], for instance, introduced methods for
performing task variations with diferent parameters from a single
recorded instance. Building upon this, AutoVCI [54] automated the
generation of verbal commands for activating saved tasks. How-
ever, these tools entail usability challenges as they require users
to manually record execution paths for each use case. In contrast,
GptVoiceTasker innovates by predicting the most suitable action
for each UI screen based on user requests without the need for
pre-programming. Our database, tailored for streamlining task exe-
cution, is automatically constructed in real-time as users interact
with their mobile apps.

2.2 Large Language Models for Enhanced
Human-AI Collaboration

The advent of generative AI has given rise to innovative LLMs,
such as GPT-4 [52], DALL-E [59] and Llama [66]. These LLMs
have revolutionized the landscape of AI development by enabling
developers to achieve complex tasks through few-shot prompting,
eliminating the need for extensive custom model training. Their
remarkable versatility has spurred active research in both IT and
non-IT domains, spanning areas like software testing [27, 48], high-
performance computing [15], fnance [73], and health science [28].
LLMs have particularly excelled in enhancing the intuitiveness of
existing methods, as seen in software testing, where they generate
authentic text inputs based on the current UI page information,

https://github.com/vuminhduc796/GPTVoiceTasker

UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA Vu et al.

replacing the conventional random text input approach [48]. This
demonstrates the transformative potential of LLMs in advancing
research and innovation across a multitude of domains.

The capabilities of LLMs have sparked a surge in their applica-
tion within assistive technology, revolutionizing the translation
of user commands into executable tasks across diverse systems.
Recent research in this domain has witnessed the transformation
of human natural language commands into various types of tasks,
including visualization tasks [69], operating system tasks [47], and
robotic tasks [43, 64]. LLMs have enabled these systems to tackle
more intricate commands beyond the scope of existing heuristic
approaches. They also exhibit a remarkable ability to comprehend
variations of commands that share similar intentions but are ex-
pressed diferently. This pioneering framework, with the support
of LLMs, paves the way for a novel (semi)automated task execution
paradigm, erasing the boundaries between traditional command
patterns and intuitive command modalities.

Notable advancements include the World of Bits platform, which
enables web-based agent training through interactions with real-
world websites using low-level actions. WoB utilizes reinforcement
learning and behavioral cloning to demonstrate these techniques’
potential in web-based tasks, ensuring reproducibility through
cached HTTP trafc [62]. Additionally, Mind2Web pushes the bound-
aries of generalist web agents by leveraging LLMs to handle com-
plex, open-ended tasks across a wide range of real-world websites,
showcasing the capacity of LLMs to generalize across diverse web
environments [18]. Generative agents further highlight the appli-
cation of LLMs in simulating human behavior in interactive set-
tings, providing a framework for more dynamic and lifelike simula-
tions [56]. Lastly, the design framework involving cells, generators,
and lenses aims to optimize object-oriented interactions with LLMs,
enhancing usability and functionality in various applications [33].

Within the domain of mobile assistants, LLMs have become
a transformative force, overtaking traditional machine learning
models as demonstrated in previous works [54, 67]. This shift has
simplifed the translation of natural voice commands into actions
on mobile UIs. Wang et al. [68] used LLMs for conversation-like
interactions with mobile UIs, showcasing a superior understanding
of on-screen elements compared to earlier machine learning meth-
ods [42]. However, their approach only focuses on single-screen
support and interactions, which is inadequate for completing multi-
step tasks. AutoDroid [72] and AutoTask [53] have employed LLMs,
incorporating a degree of application knowledge (e.g., recalling pre-
vious actions or repeating similar commands) to execute multi-step
tasks through a single command. that can complete multi-steps
tasks under one command. Yet, these methods have tended to con-
centrate on discrete tasks without fully addressing the continuity
between tasks within the same application. GptVoiceTasker ad-
vances this feld by collecting sophisticated domain knowledge
and employing advanced prompt techniques, aimed at improving
precision and establishing a more advanced smartphone virtual
assistant. This enhancement allows users to execute both familiar
and novel tasks more efectively on their devices.

3 THE GPTVOICETASKER SYSTEM
We introduce GptVoiceTasker, a virtual assistant that empow-
ers users to efciently perform multi-step tasks on their smart-
phones using voice commands. Upon receiving a user command,
GptVoiceTasker frst attempts to streamline the task using the
collected in-app navigation database (Section 3.2), to improve ex-
ecution efciency and reliability. If a task is unprecedented and
not in our saved records, GptVoiceTasker will perform a series of
step-by-step predictions of the on-screen navigation sequence to
complete the task (Section 3.1). Simultaneously, the system expands
the database with new in-app navigation knowledge for subsequent
autonomous task execution.

3.1 Unprecedented Task Exploration
Upon receiving an unprecedented task from the user, GptVoiceTasker
will progressively predict and automatically execute each step until
the task is accomplished. For each step, we collect contextual data
from the mobile UI, task execution context, and current applica-
tion information, which is combined with system-level informa-
tion. GptVoiceTasker constructs all relevant data into prompts
in a specifc format and feeds them to the LLMs to determine the
appropriate action on the user’s smartphone. Upon receiving the
response from the LLMs, GptVoiceTasker executes the action on
the smartphone accordingly.

3.1.1 Data Collection Module. As LLMs execute logical reasoning
based on textual inputs, known as prompts, a detailed and com-
prehensive prompt aids LLMs in understanding the task at hand
and generating appropriate responses. Therefore, our primary fo-
cus is to incorporate sufcient information into our prompts to
ensure accurate decisions from LLMs. This critical information,
which we defne as knowledge, is categorized into User Interface
(UI) knowledge, Task knowledge, Application knowledge, and Sys-
tem knowledge. We extract this information through static analysis
of the smartphone and its applications.

UI knowledge. Information about the on-screen UI elements
is a major component in our prompts, as it allows LLMs to com-
prehend the content currently displayed. Our primary emphasis
is on representing smartphone GUIs in a textual format that can
be interpreted by LLMs through text-based input. While recent
research has proposed converting the UI elements list to HTML
format [27, 68] to reduce the prompt length, this approach becomes
less relevant as LLMs now have relaxed restrictions on the number
of tokens in a prompt. Therefore, we propose a more comprehensive
view of the hierarchical structure of smartphone GUIs to improve
the decision accuracy of LLMs. We represent each screen as a tree
of nodes, with non-leaf nodes representing UI containers and leaf
nodes representing visible UI elements. For each UI element, we
collect the element type, text label, and append it with a unique ID.
For some element types, such as buttons or text felds, the label can
be extracted directly from the screen. However, for certain graph-
ical UI elements like icons or image buttons, such information is
not readily available. A potential solution is to apply deep learning
models to predict the potential label of icons [14]. Nevertheless, this
approach can cause excessive overhead on app pages that include
multiple images and icons, signifcantly impacting the responsive-
ness of real-time assistants. Alternatively, we propose a lightweight

GPTVoiceTasker: Advancing Multi-step Mobile Task Eficiency Through Dynamic Interface Exploration and Learning UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA

Figure 2: An example use case in Home Workout application when the user needs to interact with the smartphone hands-free
due to physical busyness. When performing an unprecedented tasks (Section 3.1), GptVoiceTasker repeatedly predicts on-screen
actions with current UI information and executes the response to achieve user tasks. The interactions collected during this
process is then saved to streamline the execution of subsequent similar tasks (Section 3.2).

approach to collect alternative captions and resource names of these
elements as labels, as they often include informative descriptions.
For example, the search icon in screen 1 of Figure. 2 has the resource
name “ic_search”, defned by app developers, indicating that this
button is used for the search functionality. Furthermore, we collect
the precise element location on the screen to cater to commands
that refer to UI elements by their locations, such as “Press the icon at
the top-right corner”. We also retrieve the list of allowed actions for
each element, which can include CLICKABLE, TEXT_EDITABLE,
SCROLLABLE, etc. This knowledge acts as a guardrail to ensure
that LLMs do not return unsupported actions, such as pressing a
disabled button. The runtime UI elements may contain UI noise,
which is a prevalent issue linked to the real-time gathering of UI
elements [40]. This problem arises when the collected UI informa-
tion does not align with its visual representation, which afects the
semantic understanding of LLMs on current UI elements, resulting

in incorrect interactions. To address this, we implement heuristics
to mitigate potential inaccuracies and ensure the reliability of col-
lected UI information. First, we utilise the collected coordination
of each UI element to eliminate out-of-bound or empty elements.
We also eliminate views are fully overlapped by other views, which
does are invisible and not interactible. In addition, we remove those
views that do not contain any interpretable information, such as
empty view containers.

Task knowledge. As complex tasks on smartphones involve
multiple steps, treating each step as a separate action may lead
to execution inaccuracies due to the misalignment of sequential
actions. Additionally, the system may reattempt a single action
multiple times, potentially causing an endless execution loop. To
address this, we maintain information about the currently executing
task and include it in our prompts. The task knowledge in each
prompt specifes the user’s request, the previously executed actions,

UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA Vu et al.

and the visited pages. Such knowledge is incorporated into our
prompts as natural language in a predefned template (e.g., “Started
from <page 1>, we <action 1> <target 1> to get to <page 2>. After
that, we <action 2> <target 2> to get to <page 3>.”), helping LLMs to
comprehend the previous actions and better align the subsequent
actions accordingly.

Application knowledge. Our experiment shows that LLMs can
incorporate the knowledge about smartphone apps to output better
results. This is particularly helpful for popular apps as LLMs are
more familiar with these apps in their training data. In addition,
these information helps validating each step in multi-step execu-
tions. For example, if the action caused unintended navigation to
another app, LLMs can utilise the current app name to know this
changes and output appropriate action to navigate back to the re-
quested app. Therefore, we provide the app name, package name
and list of activities as the application knowledge in our prompt.

System knowledge. To enhance the contextual understanding
and reasoning capabilities of the LLMs, we not only fetch on-screen
data but also retrieve relevant system-related information. We col-
lect resolution information, which identifes the current screen
orientation, and include it in our prompts. In addition, the screen
resolution helps in the pre-processing of collected UI elements,
such as validating the position of UI elements for out-of-bounds
checking.

3.1.2 Private Information Anonymisation. Smartphones often con-
tain and display personal data, including phone numbers, addresses,
and payment details. Anonymizing this data is crucial when in-
putting UI screen content into LLMs to prevent exposing sensitive
user information. To this end, we have integrated a lightweight
Named Entity Recognition (NER) to efciently searches and catego-
rizes textual information within the UI elements. Upon detecting
private information, we substitute it with standardized tags, such
as <address> or <phone number>, before the data is processed
by the LLMs. This approach not only preserves user privacy but
also ensures that LLMs understand the UI semantics accurately to
generate appropriate responses.

3.1.3 Prompt Creation. We include the user command with col-
lected data in the previous step in our prompt to predict the most
suitable action to perform on user smartphone. As the naive ap-
proach to prompt LLMs for various tasks may yield suboptimal
results due to low accuracy and randomness in responses [17], we
adopt of diferent prompt engineering techniques. These techniques
involve crafting prompts according to specifc rules and compo-
nents to elicit optimal responses from LLMs [46]. Following Least-
to-most Prompting strategy [81], GptVoiceTasker implements a
two-step prompting approach to determine the action. First, we
map the user task to a specifc action (e.g., tapping an element,
entering text, scrolling). Subsequently, based on the determined ac-
tion, subsequent prompts are sent to identify the target UI element
for executing that action (as illustrated as an example Figure. 3).
This approach allows breaking down a complex task into smaller
steps, enabling the LLMs to improve accuracy.

To empower LLMs to facilitate rapid comprehension of specifc
rules and guidelines, we employed the Few-shot Prompting ap-
proach [10], where we provide additional examplars in our prompt.
Each examplar contains the sample prompt as the input with its

corresponding response as the expected output. In addition, we
integrate “Chain of Thought” [71] into our few-shot exemplars
to help LLMs simulate human-like reasoning and provide logical
output. This includes a sentence that explains the logic behind its
output, which guides the LLM to apply a similar thought process in
handling tasks. We dynamically calculate the number of examplars
in a prompt based on the estimation of tokens used to include the
knowledge. This approach maximizes the number of exemplars,
thereby enhancing the accuracy of the response, while ensuring
we do not exceed the token limit. In few-shot exemplar 1, as in
Figure. 3, we provided a chain of thought that explains why Library
button should be pressed to fnd the video history in YouTube.

3.1.4 Action Executor. GptVoiceTasker extracts the action and
target from LLMs response to perform the interactions on user’s
device, such as tapping, scrolling, or entering text on certain UI
element. Prior mobile automation approaches [54] encounter chal-
lenges in handling runtime UI changes and app updates that might
alter UI representations and operation sequences. To improve from
previous approaches, GptVoiceTasker dynamically propose the
action based on the current UI, ensuring reliable navigation through
dynamic UI changes and updates. Additionally, GptVoiceTasker
provides audio feedback to users, confrming that the system is
automatically proceeding to the next command. This real-time
feedback ensures a smooth and intuitive user experience with
GptVoiceTasker’s interaction capabilities.

To address challenges in real-time system automation, including
failure detection in automated steps [74], our implementation inte-
grates a screen transition detector. This detector employs Hamming
distance [35] to measure diferences between screens, ensuring
screen content changes due to the action. Moreover, to validate the
success of actions, we implement additional heuristics. For example,
in scenarios involving ENTER_TEXT, we verify the presence of the
entered text in the target text box. If an action proves inexecutable
(i.e., not inducing appropriate changes to the UI), we repeat the
step with supplementary information about the failed interaction
attempts, thereby excluding these actions from the selection. An-
other challenge in mobile app automation is the dependency of UI
screens on asynchronous internet content. Providing LLMs with
incomplete or loading UI instead of fully rendered screen content
may reduce the precision in identifying appropriate actions. In re-
sponse, GptVoiceTasker delays UI collection until the screen is
fully loaded. This is achieved by detecting screen-loading widgets
in Android, leveraging information such as widget names, types,
and shapes to identify progress bars and loading indicators. Addi-
tionally, we enhance our approach by collecting data on network
transmissions to identify ongoing content download tasks, inspired
by the methodology presented in [45], which leveraged network
analysis for detecting ads. These methods enhance the reliability
of GptVoiceTasker in efectively navigating through the app’s
interface.

3.2 Precedented Task Automation
In mobile apps, UI elements on a specifc app page and in-app navi-
gation paths are predefned by developers during app development.
Therefore, the series of user interactions on the screen to complete
a task in one app remains consistent over diferent instances. Based

GPTVoiceTasker: Advancing Multi-step Mobile Task Eficiency Through Dynamic Interface Exploration and Learning UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA

Figure 3: An example of our prompt and response format to determine the most relevant target to press.

on this, GptVoiceTasker automatically creates a saved path for
each user request, enabling GptVoiceTasker to replicate interac-
tions when receiving the same or similar commands from users.
Unlike previous approaches [41, 54], which depend on manual task
creation for automation support, GptVoiceTasker automatically
records in-app navigation through on-screen interactions as de-
scribed in Section 3.1. This automated process not only expands
the coverage of automated tasks but also eliminates the need for
manual eforts in pre-defning shortcut tasks. In this section, we
outline our method (as shown in Figure. 4) to streamline subsequent
similar tasks from users, combining both LLMs-based and heuristic-
based modules. We introduce our database design in Section 3.2.1.
Initially, we identify the current UI screen displayed on the user’s
device and the destination screen (Section 3.2.2). We then fnd the
most viable path from the current screen to the destination screen
(Section 3.2.3). Finally, we incorporate human interactive feedback
to validate and fne-tune the execution for future use (Section 3.2.4).

3.2.1 Transition Graph. In alignment with previous approaches for
automating tasks in mobile apps [16], GptVoiceTasker utilizes a
directed graph for each app to enable seamless transitions between
diferent app pages. Each node in the database corresponds to a
UI page in the app, containing a unique ID and a screen descrip-
tion, as detailed in Section 3.2.2. Additionally, for each node, we
record the list of previous user requests that concluded on this page,
as these indicate the functions served by the page. The directed
edges between nodes signify possible navigation paths from one
UI page to another. These edges hold details about the required
actions and target UI elements for page transitions. This data en-
ables GptVoiceTasker to perform specifc actions on the identifed
targets, thus replicating user actions to facilitate navigation be-
tween screens. This graph expands automatically to include new UI

pages and associated page transitions as users interact with their
smartphones.

3.2.2 Screen Description & Command Patern Matching. Previous
task automation approaches typically start from an application’s
launcher page [3, 54], a method that falls short in real-world sce-
narios, especially when users request voice assistants to complete
ongoing tasks. To address this, GptVoiceTasker enables task au-
tomation from any page of the app, aiming to fulfll any new or
ongoing tasks from users. We frst identify the node that represent
the current app page in our graph database. However, identifying
a page by performing string matching on the UI content presents
substantial practical challenges. This difculty arises as a specifc
application page can display dynamic content. For example, con-
sider the search result page in the Uber Eats app, where distinct
restaurants are displayed for “spaghetti” and “sushi” search terms.
Despite featuring diferent UI content as they display diferent
restaurants, these pages share the same layout and are identifed
as the same node in our graph database. To compare between app
pages, GptVoiceTasker leverages the capabilities of LLMs to se-
mantically summarize the UI content into a semi-structured de-
scription in natural language. The description includes a short
paragraph describing overall functionality that the screen serves
based on the UI elements, current activity name and app name. In
addition, GptVoiceTasker appends the list of interactive elements,
including clickable, scrollable, and text-editable elements to the
description. To locate the current UI page among previously visited
pages, GptVoiceTasker uses LLMs for semantic matching between
the screen’s description and existing screen descriptions in the data-
base. As LLMs are profcient in logical tasks on natural language,
the response allows us to identify the node in the graph database.

After identifying the current screen, we perform semantic match-
ing to fnd the destination screen. We defne the destination screen

UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA Vu et al.

Figure 4: An example use case in Uber Eats to how GptVoiceTasker use the historical tasks to execute user new command. The
system frst locate the current screen and destination screen from the collected graph. After that, it identifes and execute the
action sequence to traverse to the destination screen. Finally, we utilise feedback from users to improve subsequent execution.

as the most relevant screen that can serve user requests. For ex-
ample, the destination screen for user command “I want to order
spaghetti” is the search result page for the keyword “spaghetti”,
where users can view the list of spaghetti restaurants. We utilise
the saved commands and screen description for each app page to
prompt LLMs to determine the most relevant page from the app.
We build a prompt that includes user requests and the list of saved
screens in the app to rank the relevancy of each app screen with
the request that user made.

3.2.3 Path Finding & Execution. After identifying the current and
destination pages within the saved graph database, GptVoiceTasker
uses the Shortest Path algorithm [29] to determine the sequence of
actions required to navigate from the start to the destination node.
GptVoiceTasker extracts this sequence from the edges connecting
the start node to the destination node and executes each action in
sequence using the Action Executor described in Section 3.1.4.

Given the dynamic nature of smartphone GUIs, where the rela-
tive coordinates of buttons may vary due to scrollable screens or
unexpected pop-ups and ads, execution validation is crucial. To en-
sure automation follows the expected sequence, GptVoiceTasker
performs validation after each action. We generate the description
for the current page (as explained in Section 3.2.2) and compare it
with the description in the anticipated node. If the two descriptions
do not semantically match, GptVoiceTasker reverts the preced-
ing action and seeks an alternative path to the destination page.
If no other path is found, GptVoiceTasker predicts and executes
subsequent steps using the On-screen Interaction Module to ex-
plore a new path. This iterative process adapts to changes in the

smartphone GUI, dynamically executing actions based on real-time
screen information.

Additionally, GptVoiceTasker leverages command parameter-
ization techniques [37, 54], allowing saved paths to be reused
for similar tasks with diferent parameters. Using the LLMs’ en-
riched vocabulary and robust natural language understanding,
GptVoiceTasker prompts the LLMs to function as an advanced
Named Entity Recognition system. This system identifes and re-
places substitutable words with new keywords in the action se-
quence. For instance, in the Uber Eats app scenario (Figure. 4), a
saved command for I want to order some sushi” can be adapted
by replacing sushi” with spaghetti”, thus modifying the command
from ENTER sushi” to ENTER “spaghetti”. GptVoiceTasker then
executes this adapted sequence to complete the task.

3.2.4 Human Feedback Loop. One common issue with UI automa-
tion tools is dealing with changes in UI elements and in-app navi-
gation due to new version updates by app developers. Additionally,
pop-up ads may dynamically appear during the automation process.
These challenges make predefned actions, such as clicking on an
anticipated screen element becomes infeasible. To enhance the reli-
ability of the saved paths, GptVoiceTasker incorporates a human-
in-the-loop approach, modifying execution paths based on human
feedback. After completing an autonomous task, GptVoiceTasker
uses user feedback to validate whether the task was successfully
executed. If users are unsatisfed with the automation, they can
provide feedback in natural language, specifying where the issue
occurs. This valuable information is saved and included in our

GPTVoiceTasker: Advancing Multi-step Mobile Task Eficiency Through Dynamic Interface Exploration and Learning UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA

prompts, resulting in improved accuracy for future executions. Ad-
ditionally, we provide an interface for users to manually amend
saved commands, allowing them to customize or shorten their com-
mands to trigger certain automation according to their preferences.
Through user feedback and iterative learning, GptVoiceTasker
facilitates human-AI collaboration in the automation process, en-
hancing LLMs decision-making and personalizing user experiences.

3.3 Implementation
We developed GptVoiceTasker as an Android application, lever-
aging the Accessibility Service provided by the Android OS and
programming it in Java [22]. Specifcally, GptVoiceTasker is de-
signed to subscribe to the typeWindowContentChanged accessibility
events [22], enabling it to detect and respond to changes in the UI
on the screen. We engineered a dynamic pipeline that systemati-
cally extracts UI elements and organizes them into a hierarchical
structure. This is achieved by processing AccessibilityNodeInfo ob-
jects [21], which are Android’s data representations of UI elements
accessible through the Android Accessibility Service. Additionally,
GptVoiceTasker gathers application-level information using the
Android PackageManager class.

For the integration of a Large Language Model, we selected GPT-
4, the most advanced model developed by OpenAI at the time of this
research [51]. For personalized services, such as screen descriptions
and transition graph data, we store this information locally on the
device for efcient future access. We made GptVoiceTasker and
the prompt templates2 publicly available at the GitHub repository3

for further research in this feld.

4 TECHNICAL EVALUATION
To evaluate the efectiveness and reliability of the proposed system,
we conducted three experiments on our command interpreting
module, unprecedented tasks exploration and usage-based execu-
tion. Specifcally, we frst assess the system’s ability to comprehend
user commands and perform on-screen interactions, comparing
its performance to other state-of-the-art approaches. In addition,
we experiment the ability of GptVoiceTasker to explore the exe-
cution path for unseen multi-step tasks. Lastly, we investigate the
system’s capability to execute multi-step tasks based on the saved
user usages.

4.1 On-screen Interaction Evaluation
4.1.1 Experiment Setup & Metric. Datasets: We collect a specialised
test set to evaluate our system’s capabilities in understanding natu-
ral language commands and mapping them to appropriate actions
and target UI elements. This dataset comprises 278 natural language
user commands to interact with on-screen Android UI elements.

Although prior research [11, 67] has produced a similar test set,
it is not directly adaptable to our context for two critical reasons.
First, some instances in the test set are artifcially synthesized based
on predetermined heuristic rules. The resulting natural language
commands are linguistically biased toward simpler linguistic pat-
terns and do not align with the complex linguistic variants inherent

2https://github.com/vuminhduc796/GPTVoiceTasker/blob/main/prompts.txt
3https://github.com/vuminhduc796/GPTVoiceTasker

in real-world human spoken utterances. Second, some test exam-
ples in the existing dataset have become obsolete or are no longer
replicable due to updates in the corresponding applications.

To construct a test set that more closely aligns with real-world
user interactions, we adopted a data-driven approach. We engaged
31 participants (17 females, 14 males), with 4 individuals having
never utilized voice assistants before, 4 using them 3-4 times a week,
6 using them daily, and 17 using them less than 3-4 times a week. All
participants are work professionals and university students who use
smartphones daily. We provided these participants with screenshots
alongside a specifc task to accomplish. We then recorded the verbal
commands they issued to their mobile device to complete the given
task. After the collection, we annotated the commands to specify
the intended action and target UI elements within the Android
system; here, the term action refers to executable functions, while
target denotes specifc UI components or elements on the current
screen. As a result, we collected 278 natural user commands for the
dataset.

Metrics: Similar to Vu et al. [67], we adopt three evaluation
metrics, namely Exact Match Accuracy (EM), Target F1 and Action
F1. EM calculates the percentage of instances in the test set where
the predicted sequence exactly matches its corresponding ground-
truth sequence. The measures Target F1 and Action F1 quantify the
average micro F1 score for the target (i.e., the UI components to be
interacted with) and the action (i.e., the actions to be performed on
the UI components), respectively. The F1 score for each instance is
computed using the formula:

2 × |pred ∩ gold|
F1 = |pred| + |gold|

where |pred| represents the size of the set of predicted targets
or actions, and |gold| denotes the size of the set of ground-truth
targets or actions. The average micro F1 score is calculated across
all instances for either targets or actions.

Baselines: We consider fve baselines for converting natural
language into semantic meaning representations, which comprise
actions and targets. These baselines are vanilla Seq2Seq [5], BERT-
LSTM [75], Voicify Parser [67], the GptVoiceTasker w Base-
Prompt model, and Wang et al.’s work [68]. In the original work
by Voicify, all three baselines employ deep learning models trained
on datasets synthesized using the Overnight method [70]. This
method generates training sets based on predefned lists of actions
and targets that are designed for evaluation scenarios in Voicify.
To ensure a fair comparison, we modifed these lists to include
the actions and targets present in our test dataset. We then re-
synthesize the training set, which includes 1,384 instances, using
the Overnight method, adhering to the implementation outlined in
Voicify’s work. The GptVoiceTasker with base prompt is used as
an ablation study to the current prompt design of GptVoiceTasker.
The base prompt contains only a minimal explanation of the task
and the UI knowledge (XML fle) of the current mobile screen. Wang
et al.’s work [68] was the frst to incorporate LLMs for interacting
with mobile interfaces. We incorporated the 2-shots LLM prompts
they demonstrated in the paper for mapping instruction to UI ac-
tions. Additionally, we have enhanced their model by integrating
the more advanced GPT-4, which also inline with the one we used
in GptVoiceTasker.

https://github.com/vuminhduc796/GPTVoiceTasker

UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA Vu et al.

Table 1: The experiment results of diferent baselines com-
pared with GptVoiceTasker in three metrics.

Models EM Accuracy (%) Action F1 (%) Target F1 (%)

Seq2Seq 25.2 47.6 35.6
BERT-LSTM 41.4 59.7 57.3
VoicifyParser 47.5 64.0 58.8

GptVoiceTasker w BasePrompt 58.4 71.6 62.4
Wang et al. [68] 79.9 85.4 83.4
GptVoiceTasker 84.7 91.7 84.7

4.1.2 Evaluation Result. Table 1 presents the results of our tech-
nical experiments. Overall, GptVoiceTasker outperforms all base-
line models across all metrics, achieving an 84.7% EM accuracy,
a 91.7% Action F1 score, and a 84.7% Target F1 score. Among
the baselines without the LLMs, the Voicify Parser performs the
best, aligning with the results reported in its original paper [67].
However, its performance sufers when faced with linguistic varia-
tions in our new test set. For instance, while the command “back”
is correctly interpreted as “(PRESS , back)”, the phrase “return
to last page”, which represents the same command, is incorrectly
parsed as “(SWIPE , DOWN)”. Both BERT-LSTM and Seq2Seq
models encounter similar issues, largely because they share ar-
chitectural and training similarities with the Voicify Parser, yet
perform even worse due to Voicify Parser being specifcally opti-
mized for task completion on Android systems. Despite the lack of
prompt design, GptVoiceTasker with a base prompt achieved bet-
ter performance than the other three DL-based baselines. However,
when compared with GptVoiceTasker, the results indicate that
incorporating a multi-level knowledge-based prompt design, along
with few-shot learning and the Chain of Thought technique within
GptVoiceTasker, can enhance the accuracy of converting natural
language to on-screen actions and the corresponding elements. The
method by Wang et al. [68] demonstrates the highest capability
among the baselines, courtesy of the LLM’s intervention, efectively
rectifying the errors previously noted. However, the lack of the
chain-of-thought and least-to-most prompt techniques occasionally
leads to inaccuracies. This is evident in instances where the system
misinterprets the intended direction in commands, such as confus-
ing DOWN with UP, or when it cannot adequately diferentiate
between actions like PRESS ENTER or OPEN when various verbs
are employed in the commands.

Benefting from the integration of LLMs and the prompting
techniques, GptVoiceTasker excels at handling linguistic variants,
consistently deriving the intended action and target regardless of
variations in the input. The Action F1 score for GptVoiceTasker
reaches 91.7, indicating its enhanced ability to predict actions across
various linguistic patterns. Moreover, we observed that LLMs ef-
fectively learns the true associations between actions and targets,
thereby excelling at target prediction as well. For instance, PRESS
is exclusively predicted with UI buttons, ENTER_TEXT is linked
solely with text input felds, and OPEN corresponds to app names.
In contrast, the baselines often learns incorrect associations and
outputs wrong target predictions. Our experimental results show
that GptVoiceTasker is efective in understanding and accurately
processing diferent linguistic variations, demonstrating its adapt-
ability in real-world scenarios.

4.2 Multi-step Execution Evaluation
4.2.1 Experimental Setup & Metrics. This experiment assesses the
Unprecedented Task Exploration module’s capability to execute
unseen tasks. We evaluated the module’s performance using the
most recent human-collected demonstrations and natural language
instructions from the Android-in-the-wild dataset [60]. This dataset
provides step-by-step on-screen interactions to complete tasks
based on natural language instructions, mirroring real-world com-
mands. From this dataset, we randomly sample the data from multi-
step Google Apps subset and manually validate each pair to get
140 test cases, with each test case has from 1 to 15 steps (M=6.705,
SD=2.764). We treat the end screen after the fnal action in the action
sequence from the dataset as the ground truth, indicating successful
command execution. We did not evaluate the accuracy of each steps
to the dataset as one task could be performed by multiple approach.
For each test case, we have GptVoiceTasker iteratively explore the
path to complete the instruction, comparing the destination screen
achieved by GptVoiceTasker with the dataset’s ground truth. A
test case was deemed successful if GptVoiceTasker reached the
same screen as it is in the ground truth with no more than three ad-
ditional steps than the dataset demonstration. Cases where the step
count was exceeded or the next step could not be identifed were
marked unsuccessful. GptVoiceTasker executed commands solely
using its task exploration module, without relying on a database
for guidance. Similar to Sec 4.1, we used Wang et al. [68] approach
as the baseline, which used a 2-shot prompting technique on the
GPT-4 model, making iterative requests after each action response.

4.2.2 Results. GptVoiceTasker achieved an 85.7% success rate
(120 out of 140), outperforming the baseline approach by Wang et al.,
which achieved a 56.4% success rate (79 out of 140). GptVoiceTasker
succeeded in performing logical reasoning to execute the tasks. It
utilizes the current app name and package name to determine if
required apps need to be opened, and uses the list of run-time
device-available app names to query the most suitable app for the
task. Notably, GptVoiceTasker efectively navigated tasks without
encountering cyclic navigation issues or repeating actions, such
as repeatedly tapping the Settings title within the Settings app,
which hindered task completion in the baseline. This improve-
ment is attributed to the integration of historical messages and
runtime execution error handling module. Our study also found
that GptVoiceTasker does not rigidly adhere to the demonstrated
paths presented in the Android-in-the-wild dataset for task comple-
tion. For example, in managing tasks within the Android Settings
App, it occasionally opted to search directly for options rather than
scrolling through menus to locate them. Other added constraints
in GptVoiceTasker helped to improve the usability of multi-step
interactions, such as validating if the current screen is scrollable or
a text feld is focused before inserting text, which were observed as
reasons that caused failures in the baseline.

Further investigation into unsuccessful cases highlighted two
main areas for improvement. First, GptVoiceTasker struggled with
time-related tasks, such as “Check the schedule for Friday next week”,
due to the LLM’s limited knowledge of the current date and time.
As a result, while GptVoiceTasker correctly opened the app, it was
unable to select the Friday of next week to view the schedule. This
could be mitigated by integrating temporal information into our

GPTVoiceTasker: Advancing Multi-step Mobile Task Eficiency Through Dynamic Interface Exploration and Learning UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA

prompts. Second, GptVoiceTasker exceeded the number of steps
when performing “Open the settings page in Google Maps”, where
the immediate step required pressing the profle picture, which is
not directly relevant to the task command. To address this issue,
we could enrich the prompts with additional contextual knowledge,
such as the steps involved in accessing settings in similar applica-
tions where pressing the profle picture is necessary. Additionally,
incorporating a strategy of random exploration steps before repeat-
ing a command could help the system discover more direct paths
to complete tasks.

4.3 Database Execution Evaluation

Table 2: Saved task execution evaluation result for direct
match tasks and parameterised tasks across 5 categories.

Category
Average Number of
Automated Steps Success Rate (%)

Direct Match Parameterised
Message Friends 4.33 93.33 86.67
Listen to Music 5.27 80.00 73.33
Set an Alarm 5.73 73.33 53.33
Check Weather 5.07 80.00 73.33

Get Directions & Map 5.53 86.67 73.33
Average 5.19 82.67 72.00

4.3.1 Experimental Setup & Metric. In this experiment, we as-
sessed GptVoiceTasker’s ability to automate tasks using the usage-
based execution module. We initially identifed the fve common
smartphone application categories, as shown in previous study [3].
Within each application category, we randomly selected fve popu-
lar applications from the Google Play Store, with downloads ranging
from 1 million to over 1 billion. For each selected app, we identifed
three features introduced by the developers in their Play Store de-
scriptions. Each feature was then used to create both a direct match
task, involving a straightforward match between user commands
and corresponding app actions, and a parameterized task, requiring
GptVoiceTasker to perform keyword substitutions to complete
the task successfully, as shown in Section 3.2.3. For creating the
direct match test cases, we paraphrased each saved command us-
ing state-of-the-art paraphrasing tool Quillbot4, as in [63]. In the
case of parameterized tasks, we substituted one entity in the para-
phrased command with another entity that has similar semantic.
For example, consider the saved task “Get directions to the nearest
supermarket”. In this case, the direct matching task would be “Find
the nearest supermarket’s location”, while the parameterized task
would involve substituting “restaurant” for “supermarket”, resulting
in “Find the nearest restaurant’s location”. This process resulted in a
total of fve app categories, each category contains 15 direct match
tasks and 15 parameterised tasks. These tasks involve 4 to 7 steps,
with an average of 5.19 steps per task as illustrated in Table 2. All
tasks can be automated with one voice command with the saved
user app usage patterns. For a detailed list of the apps and features
used in the experiment, please refer to our GitHub repository5.

4https://quillbot.com/
5https://github.com/vuminhduc796/GPTVoiceTasker/blob/main/Result.xlsx

To populate the transition graph and store screen descriptions,
we manually navigated through each screen in every application
using GptVoiceTasker. Subsequently, we confgured the saved
commands to reach the respective screens as the ground truth. We
used the success rate as the primary metric, each test case is marked
as success if GptVoiceTasker can successfully opened the desired
feature using a single command.

4.3.2 Results. Table 2 illustrates the accuracy of our saved task
execution modules. Our fndings indicate that GptVoiceTasker
achieved an impressive level of automation, successfully handling
82.7% of exact match tasks and 72.0% of parameterized tasks. No-
tably, GptVoiceTasker exhibited exceptional performance in tasks
related to messaging and directions & maps applications. This suc-
cess can be attributed to the relatively static nature of these apps,
where user interfaces maintain a consistent structure. Our results
underscore GptVoiceTasker’s profciency in command analysis, se-
mantic matching to saved tasks, and parameterized phrase substitu-
tion within these contexts. However, the accuracy of GptVoiceTasker
diminished when confronted with tasks related to setting alarms.
To better understand the root causes of this decline in performance,
we conducted an error analysis on the failed test cases. Several key
issues emerged:

• Complex Parameterized Tasks: For parameterized tasks with
additional steps, such as setting an alarm for 7:30 instead
of 7:00, GptVoiceTasker struggled due to the extra step
involved in selecting the minutes, which was on a separate
UI element. Further works include making GptVoiceTasker
adaptable to these additional steps in the automation process.

• Pop-ups Ads and Unusual UI Elements: Certain applications
presented pop-ups ads and unusual UI elements in run time
that were not encountered during the initial task-saving
process. Consequently, GptVoiceTasker faced difculties in
completing these tasks. To improve the robustness of our
approach, we recommend exploring the integration of a deep
learning model to detect and handle such ad widgets and
unusual UI elements, as in [25, 45].

5 USER STUDY
To demonstrate the practical utility of our tool, we conducted a user
study to evaluate the holistic performance of the GptVoiceTasker
system within real-world scenarios. Our evaluation involved a com-
parative analysis against two baseline systems: 1) Voice Access [76],
the ofcial voice assistant product developed by Google, with over
100 million downloads, and 2) Voicify [67], the state-of-the-art re-
search product endeavor incorporating deep learning models to
enhance command comprehension. This study pursued a threefold
objective: i) establish a performance benchmark for user interac-
tions utilizing the GptVoiceTasker system as opposed to the afore-
mentioned baseline systems, ii) juxtapose user feedback concerning
the cognitive load and overall usability of the GptVoiceTasker sys-
tem against the baselines and iii) capture qualitative insights from
participants, thus enabling the identifcation of potential avenues
for enhancing the GptVoiceTasker system. In order to achieve
these objectives, we recorded the task completion times for tasks
undertaken using both the GptVoiceTasker system and the base-
lines. Furthermore, a comprehensive post-experiment interview

https://quillbot.com/
https://github.com/vuminhduc796/GPTVoiceTasker/blob/main/Result.xlsx

UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA Vu et al.

was conducted with each participant, facilitating the collection and
analysis of both quantitative and qualitative feedback.

5.1 Tasks
We designed 6 experimental tasks, encompassing a broad spectrum
of the most common interactions performed on the screen, ranging
from tapping and swiping to entering text. Each task was structured
to comprise between 6 to 10 sequential steps. The detailed list of
these tasks is outlined in Table 3.

5.2 Participants
We recruited 18 participants, consisting of 10 males and 8 females,
aged between 18 and 31 years old for our study. The mean age
of participants was 25.83 years (SD = 4.26). The group included 8
bachelor students (from IT and Business felds), 4 master students
(IT), and 6 PhD candidates. 8 participants are native English speaker
while all other participants are profcient in English. All partici-
pants possess a commendable level of familiarity with technological
devices and actively use smartphones in their daily routines.

We advertised our experiment on LinkedIn to recruit participants
from our university. During recruitment, participants provided their
gender, age, study level, English profciency, tech profciency, and
experience with voice assistants. While participants exhibited ex-
posure to virtual assistants like Siri or Google Assistant, none were
acquainted with utilizing assistive tools for smartphone control via
voice commands. Specifcally, none of the participants had prior
experience with any of the experimental tools employed in our
study. This participant selection was deliberate, as our study sought
to gauge the learnability aspect of the experimental tools. Each
participant received a USD $30 gift card for the participation.

5.3 Procedure
We conducted face-to-face user evaluations using an Android de-
vice as the experimental tool. On this device, we had the graph
of each experimental app populated, which include the majority
of app pages and navigation within the app. At the start of the
sessions, participants were introduced to all experimental tools via
demonstrative videos. The preliminary phase involved practicing
basic tasks across all tools, enhancing participants’ familiarity with
step-by-step instructions and informative walk-through videos. We
also use the searching for exercise tasks in Figure. 2 as the practice
tasks, allowing users to achieve this task using each of the tool.

After that, participants independently executed six distinct tasks
with no experimenter intervention. Each tool was employed for
the completion of two tasks, and participants remained unaware of
which tool was developed by us. To mitigate any potential biases,
the order of tasks and the tools used were systematically counter-
balanced for each participant [19].

We applied a time cap of 60 seconds per step. We recorded the
time taken to fulfl each task, including the cut-of time to perform
quantitative analysis. We collected 108 data entries since each of
the 18 participants has fnished 6 tasks. In the end, using the System
Usability Scale (SUS) [7] form with a 5-point Likert scale, we eval-
uate the usability of GptVoiceTasker, compared to Voice Access
and Voicify. In addition, we investigated the cognitive load when
experimenting with each tool using the NASA-TLX [30] form with

Figure 5: The average time taken to complete each task using
GptVoiceTasker and the baselines in seconds.

a 7-point Likert scale. Lastly, we collected qualitative feedback on
which part they liked the most about GptVoiceTasker and what
might improve the system.

5.4 Result
5.4.1 Overall User Performance. In Figure. 5, we present the av-
erage task completion times for each experimental tool. Our tool
stands out with an average completion time of 92.5 seconds, sur-
passing Voice Access (162.2 seconds) and Voicify (141.9 seconds).
This improvement in GptVoiceTasker’s performance can be attrib-
uted to two primary factors. Firstly, we can tell that GptVoiceTasker
is better at comprehending user intentions and mapping user com-
mands to the correct actions on specifc UI elements, regardless
of the command format. In contrast, baseline tools often demand
specifc command formats, introducing errors in various usages.
This issue caused extra time costs as participants needed to seek
diferent ways to express their intentions with the baseline tools.
For example, participants tried to tap the option button, in the
Notes app with Voice Access by multiple attempts such as “press on
the option button”, “press the three-dot icons”, “tap icon for options”
before successfully give the right command “tap option”. Secondly,
GptVoiceTasker optimizes the performance by automating sev-
eral steps in one user command, as shown in Table 4. On average,
the participants saved 2.2 steps across all six tasks. For instance,
in Task 2, GptVoiceTasker efciently automated the process of
searching for Love Yourself song (as in Figure. 6(B)), drawing from
a previously stored action designed for searching other songs. This
eliminated the need for three steps required for in-app naviga-
tion. However, some participants did not realize that they could
trigger the saved tasks, leading to a missed opportunity for a signif-
icant performance boost. In addition, GptVoiceTasker relates to
network latency when sending and receiving data from the LLMs
API endpoint. This issue could be mitigated with a better network
connection.

5.4.2 Cognitive Load & Usability Ratings. Figure. 6(A) presents an
overview of participant feedback regarding their cognitive load
levels for each system, assessed using the NASA-TLX form. We
conducted a Friedman test [61] for statistical analysis on the result.
Participants reported decreased mental demand, temporal demand,
and efort when using GptVoiceTasker in comparison to the base-
line systems while achieving better performance. This result show
an improvement in GptVoiceTasker’s ability to reduce the cogni-
tive load required for operation, aligning with our design goal.

GPTVoiceTasker: Advancing Multi-step Mobile Task Eficiency Through Dynamic Interface Exploration and Learning UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA

Table 3: The list of tasks for user evaluation.

No. Task #Steps App Name #Downloads
1 Check the weather within a particular city. 6 BOM Weather 1M+
2 Search for a specifc song and play it. 6 Apple Music 100M+
3 Create a note and write "Hello world" and delete it. 8 Notes 1M+
4 Check for an unread message, reply with a mes-

sage and delete the conversation.
8 Messages 1B+

5 Search for a pizza store, and complete the order. 10 Uber Eats 100M+
6 Create a new alarm and save it. 10 Challenges Alarm Clock 1M+

Table 4: Average number of automated steps by all participants in each task.

Average Task 1 Task 2 Task 3 Task 4 Task 5 Task 6
#Steps Automated 2.22 2.67 2.00 1.67 2.17 2.50 2.33

Figure 6: The comparison between GptVoiceTasker, Voicify, and Voice Access for A) the average cognitive load when using
NASA-TLX form (lower is better) *: p < 0.01, **: p < 0.001 and B) Task 2 from the user evaluation with GptVoiceTasker and other
baselines.

To assess GptVoiceTasker’s usability in comparison to the base-
line systems, we employed Friedman test for statistical analysis
on collected System Usability Scale (SUS) scores, as depicted in
Figure. 7. The analysis verifed the enhanced usability of the voice
control system, with GptVoiceTasker achieving an average SUS
score of 79.861, surpassing Voicify (47.917) and Voice Access (36.528).
Participants found GptVoiceTasker less complex (p < 0.001), less
inconsistent (p < 0.001) and well-integrated (p < 0.001), leading to
more frequently use (p < 0.001). In addition, participants can learn
to use GptVoiceTasker quickly (p < 0.001) as they do not need to
learn a lot (p < 0.001). This remarkable outcome can be attributed
to GptVoiceTasker’s ability to efortlessly comprehend natural
human commands, reducing the need for extensive training and
practice. The lower likelihood of misinterpreting user commands
also contributed to the positive results.

5.4.3 Qalitative Feedback. In this section, we collate qualitative
feedback from participants after the experiment. Overall, the partic-
ipants are satisfed with the tool, as well as providing suggestions
for further improvements.

Ability to precisely interpret and execute human command. Par-
ticipants expressed enthusiasm about the remarkable ability of
GptVoiceTasker to interpret human commands naturally, enhanc-
ing the overall system’s intuitiveness. P1 and P12 highlighted that
they could issue commands “in their preferred manner” and “con-
verse naturally” with GptVoiceTasker. This addresses cognitive
overload concerns, as P4 appreciated the “stress-free experience”,
and P6 and P7 found GptVoiceTasker more “comfortable to use”.
For instance, when adding a new note, users could simply say “add
a new note” to prompt GptVoiceTasker to press the add button on
the screen. Moreover, participants were impressed by our tool’s
accuracy in handling user input errors. P3 noted their satisfac-
tion with how GptVoiceTasker “can still execute the correct action
even when I make mistakes in my commands”. Both P4 and P17

UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA Vu et al.

Figure 7: The comparison between GptVoiceTasker, Voicify, and Voice Access for the System Usability Scale (SUS). *: p < 0.01, **:
p < 0.001.

highlighted the tool’s usefulness in daily tasks, as it eliminates
the need to “exercise caution and stay alert” when interacting with
GptVoiceTasker. These feedback remarks strongly afrm the prac-
ticality of our approach in real-world task scenarios. In contrast,
traditional approaches typically demand fxed input formats, mak-
ing them ill-suited for real-world scenarios where user input can
vary signifcantly.

Automated execution helps accelerate tasks and improve user ex-
periences. Participants ofered positive feedback regarding the use
of saved task automation, highlighting its signifcant impact on
efciency and user experiences. P11 mentioned that this feature is
“accelerating the tasks” while P13 emphasized the potential utility of
GptVoiceTasker during physical activities, stating it would be “re-
ally useful when I work out”. P5 appreciated this feature, describing
it as “perfect for voice-interacting tools”, as it mitigates the inherent
challenges of voice command interactions. Additionally, P18 praised
the feature, noting that tasks became “fairly easy” with its imple-
mentation, indicating signifcant performance improvements. This,
combined with the advanced capability to understand user inten-
tions, enhances the intuitiveness of voice-based interfaces. When
using a smartphone, users often have a specifc task in mind, such
as setting an alarm or checking the news. Unlike other approaches
that require users to perform additional steps to translate their
intention into executable commands that a voice interface can un-
derstand and execute, GptVoiceTasker can directly execute these
tasks without causing additional mental stress. However, users also
provided valuable suggestions for enhancement. They expressed
the desire for GptVoiceTasker to suggest executable saved tasks
and display a list of saved tasks. Furthermore, participants sug-
gested improving the introduction of this feature, as P4 noted it
was “not familiar at frst”, and P6 emphasized the need for “better
introduction.” These insights underscore opportunities to refne
the feature’s usability and user onboarding, ultimately enhancing
overall user satisfaction.

Suggestions for enhancing user experience. Participants provided
valuable suggestions for improving the intuitiveness of GptVoiceTasker.

Regarding UI design, P14 recommended the inclusion of a “live
transcription” feature to display recognized voice commands. This
would help users confrm that their commands were correctly re-
ceived and make necessary adjustments if needed. Furthermore, P1
and P15 suggested incorporating a “loading indicator” to signify
ongoing executions, addressing latency issues caused by execution
delays. In terms of functionality, P7 proposed displaying a list of
available tasks as suggestions, enhancing user interaction. Addi-
tionally, P15 discussed the potential for an interface that allows
users to modify saved tasks, providing greater customization. Lastly,
participants P7 and P12 suggested making the audio feedback from
GptVoiceTasker clearer. These suggestions hold signifcant value
for GptVoiceTasker’s continuous improvement, aiming to deliver
a more seamless user experience.

6 DISCUSSION
We introduced GptVoiceTasker as an autonomous speech-based
virtual assistants. In this section, we delve into the implications and
limitations of GptVoiceTasker.

Towards the adoption of the voice-centric interface. The advance-
ments in natural language understanding, particularly through
LLMs like GPT and Bard [58], are propelling the transition towards
voice-centric interfaces. These interfaces expand the capabilities
smartphones to devices such as smartwatches, AR-VR headsets, and
desktops, thereby becoming more integral to everyday activities.
While visual-manual methods such as tapping on smartphones or
mouse-clicking on desktops are preferred for their speed and ac-
curacy, GptVoiceTasker leverages the power of LLMs to enhance
the intuitiveness of voice interactions. This enables more intelli-
gent mapping of user intentions to visual elements, facilitating the
shift to voice-assisted interactions and promoting wider adoption
of voice-centric interfaces. Additionally, the features introduced
by GptVoiceTasker contribute to the domain of voice-centric re-
search on other devices. For example, breaking down one task into
a sequence of actions provides more fexibility than fxed intents
(e.g., Firefox Voice [12]). The continuous learning from historical

GPTVoiceTasker: Advancing Multi-step Mobile Task Eficiency Through Dynamic Interface Exploration and Learning UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA

usage helps these systems understand user commands better and
personalize efcient experiences, such as preflling patient informa-
tion for Talk2Care [79] and providing personal shortcuts for Firefox
Voice [12]. Moreover, the implementation of anonymization tech-
niques addresses privacy concerns, particularly for voice-centric
interfaces that access the display content from screens.

Voice-centric interfaces also improve accessibility for users with
disabilities [80]. GptVoiceTasker helps individuals with motor and
visual impairments by substituting touch-based interactions with
voice commands. For motor impairments, this enables easier task
completion on mobile devices without touching the screen. Ad-
ditionally, GptVoiceTasker provides voice shortcuts for visually
impaired users, allowing quicker navigation of familiar screens. For
example, users can fnd specifc buttons with commands instead of
clicking through each one with Talkback. Natural interaction meth-
ods could also beneft individuals who struggle with technology
and elderly users.

Despite the promise, challenges such as the efectiveness of voice
recognition in diverse environments still persist. Addressing these
will be crucial for the broader adoption of voice-centric interfaces,
like smart homes and healthcare. This transition, while challenging,
opens new avenues for user interaction and emphasizes the need
for continued research in the HCI domain.

LLMs for task automation on user visual interfaces. Research has
highlighted the capability of LLMs to provide reasoning based on
the UI layout, applying to task automation and testing tools [27].
These models show remarkable capabilities in incorporating ex-
tensive knowledge concerning prevalent app design principles and
recognizing standard mobile interface elements, including the tool-
bar, navigation drawer, and bottom navigation bar [49] to enhance
profciency in facilitating precise in-app navigation. Our study
highlighted the vital role of spatial information and hierarchical
UI representations for LLMs in comprehending semantic connec-
tions between diverse UI elements, particularly useful for elements
lacking textual information like unlabeled icons or images. In our
user study, when tasked with deleting a message lacking a visible
delete button, LLM intelligently suggested initiating the process
by pressing the unlabelled icon button at the top right, typically
the location of the option button, and then selecting “delete” from
the ensuing options list. The core of this research lies in the trans-
formation of visual interfaces into textual descriptions that LLMs
can process, a critical step for enabling efective task execution
based on user inputs. Future research should address the models’
limitations in unconventional UI scenarios and focus on expanding
their adaptability across varied interface designs and complex user
tasks. As models grow, visual models (e.g., GPT-4v) can process
images to further enhance the accuracy of such interactions. How-
ever, optimizing the usage of visual models to balance accuracy and
efciency is crucial to compensate for the drop in response time,
thereby improving their practical application in real-time scenarios.
Such progress in LLM capabilities is pivotal for advancing user
interface automation, leading to more user-friendly and efcient
digital experiences.

Towards responsible AI in software systems. In recent years, the
remarkable advancements in LLMs have enabled the seamless in-
tegration of AI into various software and systems. However, this
integration raises signifcant concerns, particularly regarding data

privacy and security [65]. The very nature of AI-integrated systems
requires access to data, potentially putting sensitive or confdential
information at risk. Put in the context of voice assistants on smart-
phones, users are sceptical as smartphones contain many personal
and sensitive data [34]. Tools like GptVoiceTasker can read such
on-screen data and further process them to LLMs. To mitigate these
risks, it is essential to implement several key measures, not only to
protect users but also to build trust, thereby fostering greater adop-
tion of AI-based interactive systems. GptVoiceTasker represents
a pioneering efort in voice-assistive research by applying personal
information anonymization to protect user privacy when using
LLMs for logical tasks. Additionally, when executing actions on
behalf of users, voice assistants must operate responsibly, ensuring
that actions do not adversely afect users. This involves seeking
explicit user confrmation for decisions, particularly in scenarios
where actions may have signifcant implications, such as replying
to important emails or transferring money. Future work in this feld
should focus on identifying sensitive actions and prompting user
confrmation while maintaining a seamless user experience.

Limitations. The current approach poses several limitations. Firstly,
the usage-based execution relies prior usage in the particular ap-
plication, therefore it is inapplicable to unused apps. To address
this challenge, our future work aims to develop a more generalized
approach to application usage, categorizing apps by their primary
functions. For instance, we could devise a standardized set of steps
for searching and playing a song that could be applicable across
various music applications, thereby simplifying the process for new
and unfamiliar apps. Secondly, while our system shows profciency
on Android smartphones, its efectiveness on other Android-based
devices remains untested. As previously indicated, there’s poten-
tial to extend this voice-centric interface to a broader range of
gadgets, including smartwatches and AR-VR head-mounted dis-
plays. Although the vocal commands might be processed by LLMs
across devices, the user interfaces (UIs) of these devices can vary
signifcantly in their logic and layout. For instance, the stream-
lined interface of a smartwatch might necessitate more concise
output due to its smaller screen, while the immersive environment
of an AR-VR device could introduce new interaction paradigms.
This diversity in UI design and interaction methods across diferent
devices requires more investigations in future works.

7 CONCLUSION
In this paper, we introduce GptVoiceTasker, an innovative virtual
assistant designed to enhance user interactions and performance on
smartphones. GptVoiceTasker leveraged advanced prompt engi-
neering techniques to harness the capabilities of LLMs for interpret-
ing user commands and constructing logical reasoning components.
GptVoiceTasker further streamlined user interactions by automat-
ically storing previous usages to automate subsequent repetitive
tasks. Our experiments demonstrated outstanding command inter-
pretation accuracy and the efectiveness of automated execution
based on historical usage. In addition, the user evaluation validated
GptVoiceTasker’s high usability in real-world tasks by improving
user performance and reducing mental stress load, aligning with
our design objectives. As an open-source project, GptVoiceTasker

UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA Vu et al.

paves the way for future enhancements in virtual assistant intuitive-
ness, contributing to the evolution of human-computer interactions.
Further research includes applying our versatile database execution
approach across diverse platforms and operating systems, as well as
exploring innovative prompt engineering techniques to fne-tune
LLMs for various reasoning tasks.

REFERENCES
[1] Voice Access. 2022. Troubleshoot Voice Access. https://support.google.

com/accessibility/android/answer/6377053?hl=en#:~:text=If%20you%20have%
20trouble%20starting,Access%20from%20the%20lock%20screen.

[2] Apple. [n. d.]. Siri. https://www.apple.com/au/siri/
[3] Deniz Arsan, Ali Zaidi, Aravind Sagar, and Ranjitha Kumar. 2021. App-Based

Task Shortcuts for Virtual Assistants. In The 34th Annual ACM Symposium on
User Interface Software and Technology. 1089–1099.

[4] Google Assistant. 2022. Assistant. https://assistant.google.com/intl/en_au/
platforms/phones/

[5] Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. 2015. Neural ma-
chine translation by jointly learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR 2015.

[6] Lijun Bai. 2022. Research on voice control technology for smart home system. In
Proceedings of the Asia Conference on Electrical, Power and Computer Engineering.
1–7.

[7] Aaron Bangor, Philip T Kortum, and James T Miller. 2008. An empirical evaluation
of the system usability scale. Intl. Journal of Human–Computer Interaction 24, 6
(2008), 574–594.

[8] Patrick Bareiß, Beatriz Souza, Marcelo d’Amorim, and Michael Pradel. 2022. Code
generation tools (almost) for free? a study of few-shot, pre-trained language
models on code. arXiv preprint arXiv:2206.01335 (2022).

[9] Aditi Bhalerao, Samira Bhilare, Anagha Bondade, and Monal Shingade. 2017.
Smart Voice Assistant: a universal voice control solution for non-visual access to
the Android operating system. Int. Res. J. Eng. Technol 4, 2 (2017).

[10] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[11] Andrea Burns, Deniz Arsan, Sanjna Agrawal, Ranjitha Kumar, Kate Saenko, and
Bryan A. Plummer. 2022. A Dataset for Interactive Vision Language Navigation
with Unknown Command Feasibility. In European Conference on Computer Vision
(ECCV).

[12] Julia Cambre, Alex C Williams, Afsaneh Razi, Ian Bicking, Abraham Wallin,
Janice Tsai, Chinmay Kulkarni, and Jofsh Kaye. 2021. Firefox voice: An open
and extensible voice assistant built upon the web. In Proceedings of the 2021 CHI
conference on human factors in computing systems. 1–18.

[13] Samuel Carreira, Tomás Marques, José Ribeiro, and Carlos Grilo. 2023. Revolu-
tionizing Mobile Interaction: Enabling a 3 Billion Parameter GPT LLM on Mobile.
arXiv preprint arXiv:2310.01434 (2023).

[14] Jieshan Chen, Amanda Swearngin, Jason Wu, Titus Barik, Jefrey Nichols, and
Xiaoyi Zhang. 2022. Towards Complete Icon Labeling in Mobile Applications. In
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems.
1–14.

[15] Le Chen, Pei-Hung Lin, Tristan Vanderbruggen, Chunhua Liao, Murali Emani,
and Bronis de Supinski. 2023. LM4HPC: Towards Efective Language Model Ap-
plication in High-Performance Computing. In International Workshop on OpenMP.
Springer, 18–33.

[16] Sen Chen, Lingling Fan, Chunyang Chen, Ting Su, Wenhe Li, Yang Liu, and Lihua
Xu. 2019. StoryDroid: Automated Generation of Storyboard for Android Apps.
In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE).
596–607. https://doi.org/10.1109/ICSE.2019.00070

[17] Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. 2022. Program
of thoughts prompting: Disentangling computation from reasoning for numerical
reasoning tasks. arXiv preprint arXiv:2211.12588 (2022).

[18] Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang,
Huan Sun, and Yu Su. 2024. Mind2web: Towards a generalist agent for the web.
Advances in Neural Information Processing Systems 36 (2024).

[19] Venita DePuy and Vance W Berger. 2014. Counterbalancing. Wiley StatsRef:
Statistics Reference Online (2014).

[20] Amazon Developer. 2024. Build LLM-powered Alexa experiences. https://
developer.amazon.com/en-US/alexa/alexa-ai

[21] Android Developers. 2022. AccessibilityNodeInfo. https://developer.
android.com/reference/android/view/accessibility/AccessibilityNodeInfo.
AccessibilityAction

[22] Android Developers. 2022. AccessibilityService. https://developer.android.com/
guide/topics/ui/accessibility/service

[23] Apple Developers. 2024. Handle SiriKit intents in an Intents exten-
sion. https://developer.apple.com/documentation/xcode/confguring-siri-
support#Handle-SiriKit-intents-in-an-Intents-extension

[24] Google Developers. 2024. Custom Intents. https://developers.google.com/
assistant/app/custom-intents

[25] Feng Dong, Haoyu Wang, Li Li, Yao Guo, Tegawendé F Bissyandé, Tianming Liu,
Guoai Xu, and Jacques Klein. 2018. Frauddroid: Automated ad fraud detection
for android apps. In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 257–268.

[26] Jiayue Fan, Chenning Xu, Chun Yu, and Yuanchun Shi. 2021. Just speak it:
Minimize cognitive load for eyes-free text editing with a smart voice assistant.
In The 34th Annual ACM Symposium on User Interface Software and Technology.
910–921.

[27] Sidong Feng and Chunyang Chen. 2023. Prompting Is All Your Need: Automated
Android Bug Replay with Large Language Models. arXiv preprint arXiv:2306.01987
(2023).

[28] Stephen Gilbert, Hugh Harvey, Tom Melvin, Erik Vollebregt, and Paul Wicks.
2023. Large language model AI chatbots require approval as medical devices.
Nature Medicine (2023), 1–3.

[29] Bruce Golden. 1976. Shortest-path algorithms: A comparison. Operations Research
24, 6 (1976), 1164–1168.

[30] Sandra G Hart. 2006. NASA-task load index (NASA-TLX); 20 years later. In
Proceedings of the human factors and ergonomics society annual meeting, Vol. 50.
Sage publications Sage CA: Los Angeles, CA, 904–908.

[31] Julia Hirschberg and Christopher D. Manning. 2015. Advances in natural language
processing. Science 349, 6245 (2015), 261–266.

[32] Matthew B Hoy. 2018. Alexa, Siri, Cortana, and more: an introduction to voice
assistants. Medical reference services quarterly 37, 1 (2018), 81–88.

[33] Tae Soo Kim, Yoonjoo Lee, Minsuk Chang, and Juho Kim. 2023. Cells, generators,
and lenses: Design framework for object-oriented interaction with large language
models. In Proceedings of the 36th Annual ACM Symposium on User Interface
Software and Technology. 1–18.

[34] Spyros Kokolakis. 2017. Privacy attitudes and privacy behaviour: A review of
current research on the privacy paradox phenomenon. Computers & security 64
(2017), 122–134.

[35] Tsvi Kopelowitz and Ely Porat. 2018. A simple algorithm for approximating the
text-to-pattern hamming distance. In 1st Symposium on Simplicity in Algorithms
(SOSA 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[36] Y Bala Krishna and S Nagendram. 2012. Zigbee based voice control system for
smart home. International Journal on Computer Technology and Applications 3, 1
(2012), 163–168.

[37] Rebecca Krosnick and Steve Oney. 2022. ParamMacros: Creating UI Automation
Leveraging End-User Natural Language Parameterization. In 2022 IEEE Sym-
posium on Visual Languages and Human-Centric Computing (VL/HCC). 1–10.
https://doi.org/10.1109/VL/HCC53370.2022.9833005

[38] Wing Lam, Zhengkai Wu, Dengfeng Li, Wenyu Wang, Haibing Zheng, Hui Luo,
Peng Yan, Yuetang Deng, and Tao Xie. 2017. Record and replay for android: Are
we there yet in industrial cases?. In Proceedings of the 2017 11th joint meeting on
foundations of software engineering. 854–859.

[39] Jaewook Lee, Jun Wang, Elizabeth Brown, Liam Chu, Sebastian S Rodriguez, and
Jon E Froehlich. 2024. GazePointAR: A Context-Aware Multimodal Voice Assis-
tant for Pronoun Disambiguation in Wearable Augmented Reality. In Proceedings
of the CHI Conference on Human Factors in Computing Systems. 1–20.

[40] Gang Li, Gilles Baechler, Manuel Tragut, and Yang Li. 2022. Learning to Denoise
Raw Mobile UI Layouts for Improving Datasets at Scale. In Proceedings of the 2022
CHI Conference on Human Factors in Computing Systems (New Orleans, LA, USA)
(CHI ’22). Association for Computing Machinery, New York, NY, USA, Article 67,
13 pages. https://doi.org/10.1145/3491102.3502042

[41] Toby Jia-Jun Li, Amos Azaria, and Brad A Myers. 2017. SUGILITE: creating
multimodal smartphone automation by demonstration. In Proceedings of the 2017
CHI conference on human factors in computing systems. 6038–6049.

[42] Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. 2020. Mapping
natural language instructions to mobile UI action sequences. arXiv preprint
arXiv:2005.03776 (2020).

[43] Jason Xinyu Liu, Ziyi Yang, Ifrah Idrees, Sam Liang, Benjamin Schornstein,
Stefanie Tellex, and Ankit Shah. 2023. Lang2LTL: Translating Natural Language
Commands to Temporal Robot Task Specifcation. arXiv preprint arXiv:2302.11649
(2023).

[44] Kuei-Chun Liu, Ching-Hung Wu, Shau-Yin Tseng, and Yin-Te Tsai. 2015. Voice
helper: A mobile assistive system for visually impaired persons. In 2015 IEEE
International Conference on Computer and Information Technology; Ubiquitous
Computing and Communications; Dependable, Autonomic and Secure Computing;
Pervasive Intelligence and Computing. IEEE, 1400–1405.

[45] Tianming Liu, Haoyu Wang, Li Li, Xiapu Luo, Feng Dong, Yao Guo, Liu Wang,
Tegawendé Bissyandé, and Jacques Klein. 2020. Maddroid: Characterizing and de-
tecting devious ad contents for android apps. In Proceedings of The Web Conference
2020. 1715–1726.

https://support.google.com/accessibility/android/answer/6377053?hl=en#:~:text=If%20you%20have%20trouble%20starting,Access%20from%20the%20lock%20screen.
https://support.google.com/accessibility/android/answer/6377053?hl=en#:~:text=If%20you%20have%20trouble%20starting,Access%20from%20the%20lock%20screen.
https://support.google.com/accessibility/android/answer/6377053?hl=en#:~:text=If%20you%20have%20trouble%20starting,Access%20from%20the%20lock%20screen.
https://www.apple.com/au/siri/
https://assistant.google.com/intl/en_au/platforms/phones/
https://assistant.google.com/intl/en_au/platforms/phones/
https://doi.org/10.1109/ICSE.2019.00070
https://developer.amazon.com/en-US/alexa/alexa-ai
https://developer.amazon.com/en-US/alexa/alexa-ai
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo.AccessibilityAction
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo.AccessibilityAction
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo.AccessibilityAction
https://developer.android.com/guide/topics/ui/accessibility/service
https://developer.android.com/guide/topics/ui/accessibility/service
https://developer.apple.com/documentation/xcode/configuring-siri-support#Handle-SiriKit-intents-in-an-Intents-extension
https://developer.apple.com/documentation/xcode/configuring-siri-support#Handle-SiriKit-intents-in-an-Intents-extension
https://developers.google.com/assistant/app/custom-intents
https://developers.google.com/assistant/app/custom-intents
https://doi.org/10.1109/VL/HCC53370.2022.9833005
https://doi.org/10.1145/3491102.3502042

GPTVoiceTasker: Advancing Multi-step Mobile Task Eficiency Through Dynamic Interface Exploration and Learning UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA

[46] Vivian Liu and Lydia B Chilton. 2022. Design guidelines for prompt engineering
text-to-image generative models. In Proceedings of the 2022 CHI Conference on
Human Factors in Computing Systems. 1–23.

[47] Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu,
Hangliang Ding, Kaiwen Men, Kejuan Yang, et al. 2023. Agentbench: Evaluating
llms as agents. arXiv preprint arXiv:2308.03688 (2023).

[48] Zhe Liu, Chunyang Chen, Junjie Wang, Xing Che, Yuekai Huang, Jun Hu, and
Qing Wang. 2023. Fill in the blank: Context-aware automated text input genera-
tion for mobile gui testing. In 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE). IEEE, 1355–1367.

[49] Zhe Liu, Chunyang Chen, Junjie Wang, Mengzhuo Chen, Boyu Wu, Xing Che,
Dandan Wang, and Qing Wang. 2023. Chatting with GPT-3 for Zero-Shot Human-
Like Mobile Automated GUI Testing. arXiv preprint arXiv:2305.09434 (2023).

[50] Chelsea Myers, Anushay Furqan, Jessica Nebolsky, Karina Caro, and Jichen Zhu.
2018. Patterns for How Users Overcome Obstacles in Voice User Interfaces (CHI
’18). Association for Computing Machinery, New York, NY, USA, 1–7. https:
//doi.org/10.1145/3173574.3173580

[51] OpenAI. 2023. API Reference - OpenAI API. https://platform.openai.com/docs/
api-reference/introduction

[52] OpenAI. 2023. GPT-4 Technical Report. arXiv preprint arXiv:2303.08774 (2023).
[53] Lihang Pan, Bowen Wang, Chun Yu, Yuxuan Chen, Xiangyu Zhang, and Yuanchun

Shi. 2023. AutoTask: Executing Arbitrary Voice Commands by Exploring and
Learning from Mobile GUI. arXiv preprint arXiv:2312.16062 (2023).

[54] Lihang Pan, Chun Yu, JiaHui Li, Tian Huang, Xiaojun Bi, and Yuanchun Shi.
2022. Automatically Generating and Improving Voice Command Interface from
Operation Sequences on Smartphones. In Proceedings of the 2022 CHI Conference
on Human Factors in Computing Systems (New Orleans, LA, USA) (CHI ’22).
Association for Computing Machinery, New York, NY, USA, Article 208, 21 pages.
https://doi.org/10.1145/3491102.3517459

[55] Geonwoo Park and Harksoo Kim. 2018. Low-cost implementation of a named
entity recognition system for voice-activated human-appliance interfaces in a
smart home. Sustainability 10, 2 (2018), 488.

[56] Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy
Liang, and Michael S Bernstein. 2023. Generative agents: Interactive simulacra
of human behavior. In Proceedings of the 36th annual acm symposium on user
interface software and technology. 1–22.

[57] Ethan Perez, Douwe Kiela, and Kyunghyun Cho. 2021. True few-shot learning
with language models. Advances in neural information processing systems 34
(2021), 11054–11070.

[58] Md Saidur Rahaman, MM Ahsan, Nishath Anjum, Md Mizanur Rahman, and
Md Nafzur Rahman. 2023. The AI race is on! Google’s Bard and OpenAI’s
ChatGPT head to head: an opinion article. Mizanur and Rahman, Md Nafzur,
The AI Race is on (2023).

[59] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec
Radford, Mark Chen, and Ilya Sutskever. 2021. Zero-shot text-to-image generation.
In International Conference on Machine Learning. PMLR, 8821–8831.

[60] Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lil-
licrap. 2024. AndroidInTheWild: A Large-Scale Dataset For Android Device
Control. Advances in Neural Information Processing Systems 36 (2024).

[61] Michael R Sheldon, Michael J Fillyaw, and W Douglas Thompson. 1996. The
use and interpretation of the Friedman test in the analysis of ordinal-scale data
in repeated measures designs. Physiotherapy Research International 1, 4 (1996),
221–228.

[62] Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang.
2017. World of bits: An open-domain platform for web-based agents. In Interna-
tional Conference on Machine Learning. PMLR, 3135–3144.

[63] Fatemeh Shiri, Terry Yue Zhuo, Zhuang Li, Shirui Pan, Weiqing Wang, Reza
Hafari, Yuan-Fang Li, and Van Nguyen. 2022. Paraphrasing Techniques for
Maritime QA system. In 2022 25th International Conference on Information Fusion
(FUSION). IEEE, 1–8.

[64] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan
Tremblay, Dieter Fox, Jesse Thomason, and Animesh Garg. 2023. Progprompt:
Generating situated robot task plans using large language models. In 2023 IEEE

International Conference on Robotics and Automation (ICRA). IEEE, 11523–11530.
[65] Albert Yu Sun, Eliott Zemour, Arushi Saxena, Udith Vaidyanathan, Eric Lin, Chris-

tian Lau, and Vaikkunth Mugunthan. 2023. Does fne-tuning GPT-3 with the Ope-
nAI API leak personally-identifable information? arXiv preprint arXiv:2307.16382
(2023).

[66] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. 2023. Llama 2: Open foundation and fne-tuned chat models. arXiv
preprint arXiv:2307.09288 (2023).

[67] Minh Duc Vu, Han Wang, Zhuang Li, Gholamreza Hafari, Zhenchang Xing, and
Chunyang Chen. 2023. Voicify Your UI: Towards Android App Control with
Voice Commands. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 7, 1,
Article 44 (mar 2023), 22 pages. https://doi.org/10.1145/3581998

[68] Bryan Wang, Gang Li, and Yang Li. 2023. Enabling conversational interaction with
mobile ui using large language models. In Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems. 1–17.

[69] Lei Wang, Songheng Zhang, Yun Wang, Ee-Peng Lim, and Yong Wang. 2023.
LLM4Vis: Explainable Visualization Recommendation using ChatGPT. arXiv
preprint arXiv:2310.07652 (2023).

[70] Yushi Wang, Jonathan Berant, and Percy Liang. 2015. Building a semantic parser
overnight. In Proceedings of the 53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). 1332–1342.

[71] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le,
and Denny Zhou. 2022. Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903 (2022).

[72] Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun Li,
Shiqi Jiang, Yunhao Liu, Yaqin Zhang, and Yunxin Liu. 2023. Empowering LLM to
use Smartphone for Intelligent Task Automation. arXiv preprint arXiv:2308.15272
(2023).

[73] Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebas-
tian Gehrmann, Prabhanjan Kambadur, David Rosenberg, and Gideon Mann.
2023. Bloomberggpt: A large language model for fnance. arXiv preprint
arXiv:2303.17564 (2023).

[74] Feng Xiao and Long Wang. 2008. Asynchronous Consensus in Continuous-Time
Multi-Agent Systems With Switching Topology and Time-Varying Delays. IEEE
Trans. Automat. Control 53, 8 (2008), 1804–1816. https://doi.org/10.1109/TAC.
2008.929381

[75] Silei Xu, Sina Semnani, Giovanni Campagna, and Monica Lam. 2020. AutoQA:
From Databases To QA Semantic Parsers With Only Synthetic Training Data.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP). 422–434.

[76] Kannon Yamada. 2020. How to control your Android device entirely with your
voice. https://www.makeuseof.com/tag/control-android-device-entirely-voice/

[77] An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin, Linjie Li, Jianfeng Wang,
Jianwei Yang, Yiwu Zhong, Julian McAuley, Jianfeng Gao, et al. 2023. Gpt-4v in
wonderland: Large multimodal models for zero-shot smartphone gui navigation.
arXiv preprint arXiv:2311.07562 (2023).

[78] Jackie Yang, Monica S Lam, and James A Landay. 2020. Dothishere: multimodal
interaction to improve cross-application tasks on mobile devices. In Proceedings
of the 33rd Annual ACM Symposium on User Interface Software and Technology.
35–44.

[79] Ziqi Yang, Xuhai Xu, Bingsheng Yao, Ethan Rogers, Shao Zhang, Stephen Intille,
Nawar Shara, Guodong Gordon Gao, and Dakuo Wang. 2024. Talk2Care: An
LLM-based Voice Assistant for Communication between Healthcare Providers
and Older Adults. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies 8, 2 (2024), 1–35.

[80] Yu Zhong, T. V. Raman, Casey Burkhardt, Fadi Biadsy, and Jefrey P. Bigham.
2014. JustSpeak. Proceedings of the 11th Web for All Conference on - W4A 14
(2014).

[81] Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang,
Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, et al. 2022. Least-to-
most prompting enables complex reasoning in large language models. arXiv
preprint arXiv:2205.10625 (2022).

https://doi.org/10.1145/3173574.3173580
https://doi.org/10.1145/3173574.3173580
https://platform.openai.com/docs/api-reference/introduction
https://platform.openai.com/docs/api-reference/introduction
https://doi.org/10.1145/3491102.3517459
https://doi.org/10.1145/3581998
https://doi.org/10.1109/TAC.2008.929381
https://doi.org/10.1109/TAC.2008.929381
https://www.makeuseof.com/tag/control-android-device-entirely-voice/

	Abstract
	1 Introduction
	2 Background & Related works
	2.1 Voice Control & Automation on Mobile Devices
	2.2 Large Language Models for Enhanced Human-AI Collaboration

	3 The GptVoiceTasker System
	3.1 Unprecedented Task Exploration
	3.2 Precedented Task Automation
	3.3 Implementation

	4 Technical Evaluation
	4.1 On-screen Interaction Evaluation
	4.2 Multi-step Execution Evaluation
	4.3 Database Execution Evaluation

	5 User Study
	5.1 Tasks
	5.2 Participants
	5.3 Procedure
	5.4 Result

	6 Discussion
	7 Conclusion
	References

