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Figure 1: GptVoiceTasker provides an intuitive method for automating complex commands on smartphones during physically 
demanding activities, such as cooking. It automatically explores step-by-step interactions to complete unprecedented tasks and 
uses the saved information to accelerate the automation process for tasks that have been previously encountered. 
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challenges in their real-world usability, characterized by inef-
ciency and struggles in grasping user intentions. Leveraging re-
cent advances in Large Language Models (LLMs), we introduce 
GptVoiceTasker, a virtual assistant poised to enhance user ex-
periences and task efciency on mobile devices. GptVoiceTasker 
excels at intelligently deciphering user commands and executing 
relevant device interactions to streamline task completion. For 
unprecedented tasks, GptVoiceTasker utilises the contextual in-
formation and on-screen content to continuously explore and ex-
ecute the tasks. In addition, the system continually learns from 
historical user commands to automate subsequent task invoca-
tions, further enhancing execution efciency. From our experiments, 
GptVoiceTasker achieved 84.5% accuracy in parsing human com-
mands into executable actions and 85.7% accuracy in automating 
multi-step tasks. In our user study, GptVoiceTasker boosted task 
efciency in real-world scenarios by 34.85%, accompanied by posi-
tive participant feedback. We made GptVoiceTasker open-source, 
inviting further research into LLMs utilization for diverse tasks 
through prompt engineering and leveraging user usage data to 
improve efciency. 

CCS CONCEPTS 
• Human-centered computing → Interaction techniques; Smart-
phones; Natural language interfaces; Sound-based input / output. 
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1 INTRODUCTION 
The advancements in voice control technology have sparked a new 
wave of innovation, driving the exploration of its potential in trans-
forming smartphone interactions [31, 32]. With the integration of 
voice control, users can efortlessly navigate through various appli-
cations, compose messages, and even initiate tasks like checking 
the weather or playing a video on YouTube [67]. This natural mode 
of interaction not only saves time but also promotes a hands-free 
experience, allowing individuals to engage with their smartphones 
in situations where manual input operations are impractical or in-
convenient [44, 80] (refer to Figure. 2 illustrating a user engaged in 
gym activities). Moreover, the success stories of widely recognized 
voice assistants like Google Voice Assistant [4] and Siri [2] have 
further propelled the adoption of voice-based interactions, inspir-
ing researchers and developers to delve deeper into its capabilities 
and refne its usability for an even broader range of users. 

Developing autonomous voice-controlled assistants involves ad-
dressing various challenges that impact the usability of these sys-
tems [50]. Current industrial products (such as Siri and Google 
Assistant) do not provide a universal approach as they require app 
developers to explicitly defne a narrow set of voice-supported ac-
tions within the code. For instance, while those voice assistants 
fully support searching for videos on YouTube, other YouTube fea-
tures such as accessing video history is unavailable. This results in 

a disjointed and often unfnished experience for users as they can-
not rely on voice interactions to fully control their smartphone. In 
addition, these assistants often struggle to comprehend commands 
when users’ inputs are unclear or do not align with the predefned 
patterns [23, 24]. This lack of understanding further impacts the 
overall utility of the voice-controlled systems. Furthermore, app 
developers face the challenge of anticipating and programming an 
extensive variety of potential intents, a task that is both complex 
and limiting in the scope of voice assistant capabilities. 

Recently, Large Language Models (LLMs) have brought a par-
adigm shift in natural language processing (NLP), demonstrating 
remarkable capabilities in tasks like reading comprehension, transla-
tion, and text completion [8]. The advent of Few-Shot Learning has 
further amplifed the capabilities of LLMs, enabling them to quickly 
adapt to new logical reasoning tasks with minimal examples. This 
versatility and efciency in managing various conversational inter-
actions without the need for extensive retraining ofer a ground-
breaking approach, obviating the need for task-specifc models and 
extensive datasets [57]. In the context of mobile assistants/agents, 
the integration of LLMs to comprehend user commands and inter-
face with mobile UIs has gained traction [13, 53, 68, 72, 77]. Ama-
zon’s integration of LLMs into Alexa represents a signifcant step 
in enhancing voice assistants [20]. Their primary focus has been 
on improving Alexa’s ability to understand users’ needs more accu-
rately and to control other devices more efectively. But it’s not clear 
how Alexa can help with smartphones users and if the assistant is 
optimized with mobile UIs. Some research in this area concentrates 
on translating mobile GUIs into text, relying on LLMs to under-
stand the context and predict interactive screen elements [68, 72]. 
However, this method sometimes struggles with the extraction of 
irrelevant GUI elements or fails when the command does not di-
rectly relate to the current screen. Other UI automation tools for UI 
testing explored enhancing LLMs with image processing capabili-
ties, such as those found in GPT-4v [77]. While this approach shows 
a higher success rate, it is hampered by longer processing times 
and increased costs, which can negatively impact user experience 
in real-time systems like voice assistants. 

This paper introduces GptVoiceTasker, a novel voice assistant 
that automates multi-step unprecedented tasks by dynamically ex-
ploring app interface and accelerate similar tasks through prior 
usages. Drawing inspiration from the conventional record-and-
replay approach [38, 41], GptVoiceTasker is designed to learn GUI 
transformations as users navigate through apps. Instead of sim-
ply transmitting live UI information, GptVoiceTasker captures 
information of the current UI as the user interacts with the app, 
storing this data in a backend database as known knowledge to 
the system. Whenever a user command is issued, GptVoiceTasker 
cross-references the new executing task with this stored knowl-
edge to make informed decisions. This method allows reproduction 
of tasks for similar future requests, enhancing task efciency and 
accuracy. If a user command references a unprecedented feature, 
GptVoiceTasker will step-by-step explore and record the naviga-
tional path to achieve the feature. Our system achieves this by 
advanced prompt engineering techniques to ensure a precise un-
derstanding of user commands without extensive model training. 
GptVoiceTasker efectively bridges the divide between natural lan-
guage commands and interactive mobile tasks, enabling seamless 
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automation of everyday tasks that include actions like scrolling, 
tapping, and text input purely via voice commands. 

We validated the technical contributions of GptVoiceTasker by 
evaluating i) the ability to parse user commands into executable 
actions, ii) the ability to complete multi-step tasks given one com-
mand, and iii) the ability to streamline saved tasks. The command 
parser achieved over 90% accuracy on a human command dataset 
collected from the user study. GptVoiceTasker also achieved 85.7% 
success rate in completing human-collected multi-step tasks. Our 
automated execution achieved 82.7% success rate for direct match 
tasks and 72.0% success rate for tasks with diferent parameters. 
To validate the usability of GptVoiceTasker, we conducted a user 
evaluation with 18 participants, each completing a set of tasks 
using GptVoiceTasker and two state-of-the-art baselines. We col-
lected the time taken to complete each task, as well as quanti-
tative and quality feedback from users. The results showed that 
GptVoiceTasker accelerated the tasks by 34.85% and received pos-
itive feedback regarding usability. 

To summarize, the contributions of this paper include: 

• Development of GptVoiceTasker, a voice assistant that har-
nesses the capabilities of LLMs to streamline the automation 
of multi-step tasks by predicting the most optimal step on 
each individual screen. 

• A graph-based local database design that automates the 
recording and retrieval of personal app usages, enhancing 
task execution efciency for virtual assistant interactions. 

• Conducting a user evaluation to validate the efectiveness 
of our approach, along with empirical fndings on system 
limitations and considerations for voice assistant design. 

• GptVoiceTasker1 is open-sourced so that anyone can use 
and continue to improve the system. 

2 BACKGROUND & RELATED WORKS 

2.1 Voice Control & Automation on Mobile 
Devices 

Recent advancements in Natural Language Understanding (NLU) 
have signifcantly enhanced the development of voice assistants 
across various platforms, including ubiquitous systems [6, 36] and 
home appliances [55]. 

An early milestone in smartphone voice control interfaces was 
JustSpeak, which harnessed Google’s Automatic Speech Recogni-
tion (ASR) to record user commands and introduced innovative 
utterance parsing techniques [80]. Subsequently, the Smart Voice 
Assistant expanded on JustSpeak’s capabilities by enabling users 
to manage calls and SMS through voice commands [9]. However, 
these initial approaches, foundational as they were, encountered us-
ability issues stemming from rigid language parsing heuristics and 
limited use cases, which spurred the need for further development 
of smartphone virtual assistants. 

In recent years, signifcant advancements in language parsing 
capabilities have been achieved through deep learning models. SA-
VANT leveraged Dialogfow as a conversational agent to extract 
user intent from utterances [3], while DoThisHere employed the 

1https://github.com/vuminhduc796/GPTVoiceTasker 

pre-built Almond language model to enable voice control for re-
trieving and setting UI contents in Android [78]. Google released 
Voice Access [1], aimed to replace manual interactions with voice 
command, which has over 100 millions downloads on Google Play 
Store. Moreover, there are Firefox Voice, an open and extensible 
web-based voice assistant with speech-to-text engine [12], and 
Talk2Care, which leverages LLMs to facilitate communication be-
tween healthcare providers and older adults [79]. Additionally, Just 
Speak It has focused on minimizing cognitive load during eyes-free 
text editing with a smart voice assistant [26], while GazePointAR 
uses context-aware multimodal inputs for pronoun disambiguation 
in augmented reality [39]. Voicify [67] introduced VoicifyParser, an 
advanced deep learning approach for parsing user commands into 
on-screen interactions. However, the interaction paradigm with 
these existing approaches remains somewhat unnatural, requir-
ing users to issue precise machine-like instructions, such as “Press 
save button”. This limitation means that they may struggle to fully 
comprehend high-level user intentions, such as “I want to save this 
note”. We propose GptVoiceTasker to address these challenges 
and revolutionise the voice-based interactions between human and 
software systems. Our solution leverages the capabilities of LLMs 
to map high-level user intentions to executable actions, enabling 
on-screen interactions through intention-based voice commands. 
This approach seeks to accommodate the fexibility and natural lan-
guage of human commands, ushering in a new era of user-friendly 
assistive tools. 

Research has also delved into voice command interfaces for au-
tomating smartphone tasks, often categorized as programming-by-
demonstration tools [3]. These systems generally utilize a record-
and-replay strategy, where the user records a series of actions 
to complete a task and later triggers that sequence with a voice 
command. SUGILITE [41], for instance, introduced methods for 
performing task variations with diferent parameters from a single 
recorded instance. Building upon this, AutoVCI [54] automated the 
generation of verbal commands for activating saved tasks. How-
ever, these tools entail usability challenges as they require users 
to manually record execution paths for each use case. In contrast, 
GptVoiceTasker innovates by predicting the most suitable action 
for each UI screen based on user requests without the need for 
pre-programming. Our database, tailored for streamlining task exe-
cution, is automatically constructed in real-time as users interact 
with their mobile apps. 

2.2 Large Language Models for Enhanced 
Human-AI Collaboration 

The advent of generative AI has given rise to innovative LLMs, 
such as GPT-4 [52], DALL-E [59] and Llama [66]. These LLMs 
have revolutionized the landscape of AI development by enabling 
developers to achieve complex tasks through few-shot prompting, 
eliminating the need for extensive custom model training. Their 
remarkable versatility has spurred active research in both IT and 
non-IT domains, spanning areas like software testing [27, 48], high-
performance computing [15], fnance [73], and health science [28]. 
LLMs have particularly excelled in enhancing the intuitiveness of 
existing methods, as seen in software testing, where they generate 
authentic text inputs based on the current UI page information, 
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replacing the conventional random text input approach [48]. This 
demonstrates the transformative potential of LLMs in advancing 
research and innovation across a multitude of domains. 

The capabilities of LLMs have sparked a surge in their applica-
tion within assistive technology, revolutionizing the translation 
of user commands into executable tasks across diverse systems. 
Recent research in this domain has witnessed the transformation 
of human natural language commands into various types of tasks, 
including visualization tasks [69], operating system tasks [47], and 
robotic tasks [43, 64]. LLMs have enabled these systems to tackle 
more intricate commands beyond the scope of existing heuristic 
approaches. They also exhibit a remarkable ability to comprehend 
variations of commands that share similar intentions but are ex-
pressed diferently. This pioneering framework, with the support 
of LLMs, paves the way for a novel (semi)automated task execution 
paradigm, erasing the boundaries between traditional command 
patterns and intuitive command modalities. 

Notable advancements include the World of Bits platform, which 
enables web-based agent training through interactions with real-
world websites using low-level actions. WoB utilizes reinforcement 
learning and behavioral cloning to demonstrate these techniques’ 
potential in web-based tasks, ensuring reproducibility through 
cached HTTP trafc [62]. Additionally, Mind2Web pushes the bound-
aries of generalist web agents by leveraging LLMs to handle com-
plex, open-ended tasks across a wide range of real-world websites, 
showcasing the capacity of LLMs to generalize across diverse web 
environments [18]. Generative agents further highlight the appli-
cation of LLMs in simulating human behavior in interactive set-
tings, providing a framework for more dynamic and lifelike simula-
tions [56]. Lastly, the design framework involving cells, generators, 
and lenses aims to optimize object-oriented interactions with LLMs, 
enhancing usability and functionality in various applications [33]. 

Within the domain of mobile assistants, LLMs have become 
a transformative force, overtaking traditional machine learning 
models as demonstrated in previous works [54, 67]. This shift has 
simplifed the translation of natural voice commands into actions 
on mobile UIs. Wang et al. [68] used LLMs for conversation-like 
interactions with mobile UIs, showcasing a superior understanding 
of on-screen elements compared to earlier machine learning meth-
ods [42]. However, their approach only focuses on single-screen 
support and interactions, which is inadequate for completing multi-
step tasks. AutoDroid [72] and AutoTask [53] have employed LLMs, 
incorporating a degree of application knowledge (e.g., recalling pre-
vious actions or repeating similar commands) to execute multi-step 
tasks through a single command. that can complete multi-steps 
tasks under one command. Yet, these methods have tended to con-
centrate on discrete tasks without fully addressing the continuity 
between tasks within the same application. GptVoiceTasker ad-
vances this feld by collecting sophisticated domain knowledge 
and employing advanced prompt techniques, aimed at improving 
precision and establishing a more advanced smartphone virtual 
assistant. This enhancement allows users to execute both familiar 
and novel tasks more efectively on their devices. 

3 THE GPTVOICETASKER SYSTEM 
We introduce GptVoiceTasker, a virtual assistant that empow-
ers users to efciently perform multi-step tasks on their smart-
phones using voice commands. Upon receiving a user command, 
GptVoiceTasker frst attempts to streamline the task using the 
collected in-app navigation database (Section 3.2), to improve ex-
ecution efciency and reliability. If a task is unprecedented and 
not in our saved records, GptVoiceTasker will perform a series of 
step-by-step predictions of the on-screen navigation sequence to 
complete the task (Section 3.1). Simultaneously, the system expands 
the database with new in-app navigation knowledge for subsequent 
autonomous task execution. 

3.1 Unprecedented Task Exploration 
Upon receiving an unprecedented task from the user, GptVoiceTasker 
will progressively predict and automatically execute each step until 
the task is accomplished. For each step, we collect contextual data 
from the mobile UI, task execution context, and current applica-
tion information, which is combined with system-level informa-
tion. GptVoiceTasker constructs all relevant data into prompts 
in a specifc format and feeds them to the LLMs to determine the 
appropriate action on the user’s smartphone. Upon receiving the 
response from the LLMs, GptVoiceTasker executes the action on 
the smartphone accordingly. 

3.1.1 Data Collection Module. As LLMs execute logical reasoning 
based on textual inputs, known as prompts, a detailed and com-
prehensive prompt aids LLMs in understanding the task at hand 
and generating appropriate responses. Therefore, our primary fo-
cus is to incorporate sufcient information into our prompts to 
ensure accurate decisions from LLMs. This critical information, 
which we defne as knowledge, is categorized into User Interface 
(UI) knowledge, Task knowledge, Application knowledge, and Sys-
tem knowledge. We extract this information through static analysis 
of the smartphone and its applications. 

UI knowledge. Information about the on-screen UI elements 
is a major component in our prompts, as it allows LLMs to com-
prehend the content currently displayed. Our primary emphasis 
is on representing smartphone GUIs in a textual format that can 
be interpreted by LLMs through text-based input. While recent 
research has proposed converting the UI elements list to HTML 
format [27, 68] to reduce the prompt length, this approach becomes 
less relevant as LLMs now have relaxed restrictions on the number 
of tokens in a prompt. Therefore, we propose a more comprehensive 
view of the hierarchical structure of smartphone GUIs to improve 
the decision accuracy of LLMs. We represent each screen as a tree 
of nodes, with non-leaf nodes representing UI containers and leaf 
nodes representing visible UI elements. For each UI element, we 
collect the element type, text label, and append it with a unique ID. 
For some element types, such as buttons or text felds, the label can 
be extracted directly from the screen. However, for certain graph-
ical UI elements like icons or image buttons, such information is 
not readily available. A potential solution is to apply deep learning 
models to predict the potential label of icons [14]. Nevertheless, this 
approach can cause excessive overhead on app pages that include 
multiple images and icons, signifcantly impacting the responsive-
ness of real-time assistants. Alternatively, we propose a lightweight 



GPTVoiceTasker: Advancing Multi-step Mobile Task Eficiency Through Dynamic Interface Exploration and Learning UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA 

Figure 2: An example use case in Home Workout application when the user needs to interact with the smartphone hands-free 
due to physical busyness. When performing an unprecedented tasks (Section 3.1), GptVoiceTasker repeatedly predicts on-screen 
actions with current UI information and executes the response to achieve user tasks. The interactions collected during this 
process is then saved to streamline the execution of subsequent similar tasks (Section 3.2). 

approach to collect alternative captions and resource names of these 
elements as labels, as they often include informative descriptions. 
For example, the search icon in screen 1 of Figure. 2 has the resource 
name “ic_search”, defned by app developers, indicating that this 
button is used for the search functionality. Furthermore, we collect 
the precise element location on the screen to cater to commands 
that refer to UI elements by their locations, such as “Press the icon at 
the top-right corner”. We also retrieve the list of allowed actions for 
each element, which can include CLICKABLE, TEXT_EDITABLE, 
SCROLLABLE, etc. This knowledge acts as a guardrail to ensure 
that LLMs do not return unsupported actions, such as pressing a 
disabled button. The runtime UI elements may contain UI noise, 
which is a prevalent issue linked to the real-time gathering of UI 
elements [40]. This problem arises when the collected UI informa-
tion does not align with its visual representation, which afects the 
semantic understanding of LLMs on current UI elements, resulting 

in incorrect interactions. To address this, we implement heuristics 
to mitigate potential inaccuracies and ensure the reliability of col-
lected UI information. First, we utilise the collected coordination 
of each UI element to eliminate out-of-bound or empty elements. 
We also eliminate views are fully overlapped by other views, which 
does are invisible and not interactible. In addition, we remove those 
views that do not contain any interpretable information, such as 
empty view containers. 

Task knowledge. As complex tasks on smartphones involve 
multiple steps, treating each step as a separate action may lead 
to execution inaccuracies due to the misalignment of sequential 
actions. Additionally, the system may reattempt a single action 
multiple times, potentially causing an endless execution loop. To 
address this, we maintain information about the currently executing 
task and include it in our prompts. The task knowledge in each 
prompt specifes the user’s request, the previously executed actions, 
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and the visited pages. Such knowledge is incorporated into our 
prompts as natural language in a predefned template (e.g., “Started 
from <page 1>, we <action 1> <target 1> to get to <page 2>. After 
that, we <action 2> <target 2> to get to <page 3>.” ), helping LLMs to 
comprehend the previous actions and better align the subsequent 
actions accordingly. 

Application knowledge. Our experiment shows that LLMs can 
incorporate the knowledge about smartphone apps to output better 
results. This is particularly helpful for popular apps as LLMs are 
more familiar with these apps in their training data. In addition, 
these information helps validating each step in multi-step execu-
tions. For example, if the action caused unintended navigation to 
another app, LLMs can utilise the current app name to know this 
changes and output appropriate action to navigate back to the re-
quested app. Therefore, we provide the app name, package name 
and list of activities as the application knowledge in our prompt. 

System knowledge. To enhance the contextual understanding 
and reasoning capabilities of the LLMs, we not only fetch on-screen 
data but also retrieve relevant system-related information. We col-
lect resolution information, which identifes the current screen 
orientation, and include it in our prompts. In addition, the screen 
resolution helps in the pre-processing of collected UI elements, 
such as validating the position of UI elements for out-of-bounds 
checking. 

3.1.2 Private Information Anonymisation. Smartphones often con-
tain and display personal data, including phone numbers, addresses, 
and payment details. Anonymizing this data is crucial when in-
putting UI screen content into LLMs to prevent exposing sensitive 
user information. To this end, we have integrated a lightweight 
Named Entity Recognition (NER) to efciently searches and catego-
rizes textual information within the UI elements. Upon detecting 
private information, we substitute it with standardized tags, such 
as <address> or <phone number>, before the data is processed 
by the LLMs. This approach not only preserves user privacy but 
also ensures that LLMs understand the UI semantics accurately to 
generate appropriate responses. 

3.1.3 Prompt Creation. We include the user command with col-
lected data in the previous step in our prompt to predict the most 
suitable action to perform on user smartphone. As the naive ap-
proach to prompt LLMs for various tasks may yield suboptimal 
results due to low accuracy and randomness in responses [17], we 
adopt of diferent prompt engineering techniques. These techniques 
involve crafting prompts according to specifc rules and compo-
nents to elicit optimal responses from LLMs [46]. Following Least-
to-most Prompting strategy [81], GptVoiceTasker implements a 
two-step prompting approach to determine the action. First, we 
map the user task to a specifc action (e.g., tapping an element, 
entering text, scrolling). Subsequently, based on the determined ac-
tion, subsequent prompts are sent to identify the target UI element 
for executing that action ( as illustrated as an example Figure. 3). 
This approach allows breaking down a complex task into smaller 
steps, enabling the LLMs to improve accuracy. 

To empower LLMs to facilitate rapid comprehension of specifc 
rules and guidelines, we employed the Few-shot Prompting ap-
proach [10], where we provide additional examplars in our prompt. 
Each examplar contains the sample prompt as the input with its 

corresponding response as the expected output. In addition, we 
integrate “Chain of Thought” [71] into our few-shot exemplars 
to help LLMs simulate human-like reasoning and provide logical 
output. This includes a sentence that explains the logic behind its 
output, which guides the LLM to apply a similar thought process in 
handling tasks. We dynamically calculate the number of examplars 
in a prompt based on the estimation of tokens used to include the 
knowledge. This approach maximizes the number of exemplars, 
thereby enhancing the accuracy of the response, while ensuring 
we do not exceed the token limit. In few-shot exemplar 1, as in 
Figure. 3, we provided a chain of thought that explains why Library 
button should be pressed to fnd the video history in YouTube. 

3.1.4 Action Executor. GptVoiceTasker extracts the action and 
target from LLMs response to perform the interactions on user’s 
device, such as tapping, scrolling, or entering text on certain UI 
element. Prior mobile automation approaches [54] encounter chal-
lenges in handling runtime UI changes and app updates that might 
alter UI representations and operation sequences. To improve from 
previous approaches, GptVoiceTasker dynamically propose the 
action based on the current UI, ensuring reliable navigation through 
dynamic UI changes and updates. Additionally, GptVoiceTasker 
provides audio feedback to users, confrming that the system is 
automatically proceeding to the next command. This real-time 
feedback ensures a smooth and intuitive user experience with 
GptVoiceTasker’s interaction capabilities. 

To address challenges in real-time system automation, including 
failure detection in automated steps [74], our implementation inte-
grates a screen transition detector. This detector employs Hamming 
distance [35] to measure diferences between screens, ensuring 
screen content changes due to the action. Moreover, to validate the 
success of actions, we implement additional heuristics. For example, 
in scenarios involving ENTER_TEXT, we verify the presence of the 
entered text in the target text box. If an action proves inexecutable 
(i.e., not inducing appropriate changes to the UI), we repeat the 
step with supplementary information about the failed interaction 
attempts, thereby excluding these actions from the selection. An-
other challenge in mobile app automation is the dependency of UI 
screens on asynchronous internet content. Providing LLMs with 
incomplete or loading UI instead of fully rendered screen content 
may reduce the precision in identifying appropriate actions. In re-
sponse, GptVoiceTasker delays UI collection until the screen is 
fully loaded. This is achieved by detecting screen-loading widgets 
in Android, leveraging information such as widget names, types, 
and shapes to identify progress bars and loading indicators. Addi-
tionally, we enhance our approach by collecting data on network 
transmissions to identify ongoing content download tasks, inspired 
by the methodology presented in [45], which leveraged network 
analysis for detecting ads. These methods enhance the reliability 
of GptVoiceTasker in efectively navigating through the app’s 
interface. 

3.2 Precedented Task Automation 
In mobile apps, UI elements on a specifc app page and in-app navi-
gation paths are predefned by developers during app development. 
Therefore, the series of user interactions on the screen to complete 
a task in one app remains consistent over diferent instances. Based 
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Figure 3: An example of our prompt and response format to determine the most relevant target to press. 

on this, GptVoiceTasker automatically creates a saved path for 
each user request, enabling GptVoiceTasker to replicate interac-
tions when receiving the same or similar commands from users. 
Unlike previous approaches [41, 54], which depend on manual task 
creation for automation support, GptVoiceTasker automatically 
records in-app navigation through on-screen interactions as de-
scribed in Section 3.1. This automated process not only expands 
the coverage of automated tasks but also eliminates the need for 
manual eforts in pre-defning shortcut tasks. In this section, we 
outline our method (as shown in Figure. 4) to streamline subsequent 
similar tasks from users, combining both LLMs-based and heuristic-
based modules. We introduce our database design in Section 3.2.1. 
Initially, we identify the current UI screen displayed on the user’s 
device and the destination screen (Section 3.2.2). We then fnd the 
most viable path from the current screen to the destination screen 
(Section 3.2.3). Finally, we incorporate human interactive feedback 
to validate and fne-tune the execution for future use (Section 3.2.4). 

3.2.1 Transition Graph. In alignment with previous approaches for 
automating tasks in mobile apps [16], GptVoiceTasker utilizes a 
directed graph for each app to enable seamless transitions between 
diferent app pages. Each node in the database corresponds to a 
UI page in the app, containing a unique ID and a screen descrip-
tion, as detailed in Section 3.2.2. Additionally, for each node, we 
record the list of previous user requests that concluded on this page, 
as these indicate the functions served by the page. The directed 
edges between nodes signify possible navigation paths from one 
UI page to another. These edges hold details about the required 
actions and target UI elements for page transitions. This data en-
ables GptVoiceTasker to perform specifc actions on the identifed 
targets, thus replicating user actions to facilitate navigation be-
tween screens. This graph expands automatically to include new UI 

pages and associated page transitions as users interact with their 
smartphones. 

3.2.2 Screen Description & Command Patern Matching. Previous 
task automation approaches typically start from an application’s 
launcher page [3, 54], a method that falls short in real-world sce-
narios, especially when users request voice assistants to complete 
ongoing tasks. To address this, GptVoiceTasker enables task au-
tomation from any page of the app, aiming to fulfll any new or 
ongoing tasks from users. We frst identify the node that represent 
the current app page in our graph database. However, identifying 
a page by performing string matching on the UI content presents 
substantial practical challenges. This difculty arises as a specifc 
application page can display dynamic content. For example, con-
sider the search result page in the Uber Eats app, where distinct 
restaurants are displayed for “spaghetti” and “sushi” search terms. 
Despite featuring diferent UI content as they display diferent 
restaurants, these pages share the same layout and are identifed 
as the same node in our graph database. To compare between app 
pages, GptVoiceTasker leverages the capabilities of LLMs to se-
mantically summarize the UI content into a semi-structured de-
scription in natural language. The description includes a short 
paragraph describing overall functionality that the screen serves 
based on the UI elements, current activity name and app name. In 
addition, GptVoiceTasker appends the list of interactive elements, 
including clickable, scrollable, and text-editable elements to the 
description. To locate the current UI page among previously visited 
pages, GptVoiceTasker uses LLMs for semantic matching between 
the screen’s description and existing screen descriptions in the data-
base. As LLMs are profcient in logical tasks on natural language, 
the response allows us to identify the node in the graph database. 

After identifying the current screen, we perform semantic match-
ing to fnd the destination screen. We defne the destination screen 
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Figure 4: An example use case in Uber Eats to how GptVoiceTasker use the historical tasks to execute user new command. The 
system frst locate the current screen and destination screen from the collected graph. After that, it identifes and execute the 
action sequence to traverse to the destination screen. Finally, we utilise feedback from users to improve subsequent execution. 

as the most relevant screen that can serve user requests. For ex-
ample, the destination screen for user command “I want to order 
spaghetti” is the search result page for the keyword “spaghetti”, 
where users can view the list of spaghetti restaurants. We utilise 
the saved commands and screen description for each app page to 
prompt LLMs to determine the most relevant page from the app. 
We build a prompt that includes user requests and the list of saved 
screens in the app to rank the relevancy of each app screen with 
the request that user made. 

3.2.3 Path Finding & Execution. After identifying the current and 
destination pages within the saved graph database, GptVoiceTasker 
uses the Shortest Path algorithm [29] to determine the sequence of 
actions required to navigate from the start to the destination node. 
GptVoiceTasker extracts this sequence from the edges connecting 
the start node to the destination node and executes each action in 
sequence using the Action Executor described in Section 3.1.4. 

Given the dynamic nature of smartphone GUIs, where the rela-
tive coordinates of buttons may vary due to scrollable screens or 
unexpected pop-ups and ads, execution validation is crucial. To en-
sure automation follows the expected sequence, GptVoiceTasker 
performs validation after each action. We generate the description 
for the current page (as explained in Section 3.2.2) and compare it 
with the description in the anticipated node. If the two descriptions 
do not semantically match, GptVoiceTasker reverts the preced-
ing action and seeks an alternative path to the destination page. 
If no other path is found, GptVoiceTasker predicts and executes 
subsequent steps using the On-screen Interaction Module to ex-
plore a new path. This iterative process adapts to changes in the 

smartphone GUI, dynamically executing actions based on real-time 
screen information. 

Additionally, GptVoiceTasker leverages command parameter-
ization techniques [37, 54], allowing saved paths to be reused 
for similar tasks with diferent parameters. Using the LLMs’ en-
riched vocabulary and robust natural language understanding, 
GptVoiceTasker prompts the LLMs to function as an advanced 
Named Entity Recognition system. This system identifes and re-
places substitutable words with new keywords in the action se-
quence. For instance, in the Uber Eats app scenario (Figure. 4), a 
saved command for I want to order some sushi” can be adapted 
by replacing sushi” with spaghetti”, thus modifying the command 
from ENTER sushi” to ENTER “spaghetti”. GptVoiceTasker then 
executes this adapted sequence to complete the task. 

3.2.4 Human Feedback Loop. One common issue with UI automa-
tion tools is dealing with changes in UI elements and in-app navi-
gation due to new version updates by app developers. Additionally, 
pop-up ads may dynamically appear during the automation process. 
These challenges make predefned actions, such as clicking on an 
anticipated screen element becomes infeasible. To enhance the reli-
ability of the saved paths, GptVoiceTasker incorporates a human-
in-the-loop approach, modifying execution paths based on human 
feedback. After completing an autonomous task, GptVoiceTasker 
uses user feedback to validate whether the task was successfully 
executed. If users are unsatisfed with the automation, they can 
provide feedback in natural language, specifying where the issue 
occurs. This valuable information is saved and included in our 
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prompts, resulting in improved accuracy for future executions. Ad-
ditionally, we provide an interface for users to manually amend 
saved commands, allowing them to customize or shorten their com-
mands to trigger certain automation according to their preferences. 
Through user feedback and iterative learning, GptVoiceTasker 
facilitates human-AI collaboration in the automation process, en-
hancing LLMs decision-making and personalizing user experiences. 

3.3 Implementation 
We developed GptVoiceTasker as an Android application, lever-
aging the Accessibility Service provided by the Android OS and 
programming it in Java [22]. Specifcally, GptVoiceTasker is de-
signed to subscribe to the typeWindowContentChanged accessibility 
events [22], enabling it to detect and respond to changes in the UI 
on the screen. We engineered a dynamic pipeline that systemati-
cally extracts UI elements and organizes them into a hierarchical 
structure. This is achieved by processing AccessibilityNodeInfo ob-
jects [21], which are Android’s data representations of UI elements 
accessible through the Android Accessibility Service. Additionally, 
GptVoiceTasker gathers application-level information using the 
Android PackageManager class. 

For the integration of a Large Language Model, we selected GPT-
4, the most advanced model developed by OpenAI at the time of this 
research [51]. For personalized services, such as screen descriptions 
and transition graph data, we store this information locally on the 
device for efcient future access. We made GptVoiceTasker and 
the prompt templates2 publicly available at the GitHub repository3 

for further research in this feld. 

4 TECHNICAL EVALUATION 
To evaluate the efectiveness and reliability of the proposed system, 
we conducted three experiments on our command interpreting 
module, unprecedented tasks exploration and usage-based execu-
tion. Specifcally, we frst assess the system’s ability to comprehend 
user commands and perform on-screen interactions, comparing 
its performance to other state-of-the-art approaches. In addition, 
we experiment the ability of GptVoiceTasker to explore the exe-
cution path for unseen multi-step tasks. Lastly, we investigate the 
system’s capability to execute multi-step tasks based on the saved 
user usages. 

4.1 On-screen Interaction Evaluation 
4.1.1 Experiment Setup & Metric. Datasets: We collect a specialised 
test set to evaluate our system’s capabilities in understanding natu-
ral language commands and mapping them to appropriate actions 
and target UI elements. This dataset comprises 278 natural language 
user commands to interact with on-screen Android UI elements. 

Although prior research [11, 67] has produced a similar test set, 
it is not directly adaptable to our context for two critical reasons. 
First, some instances in the test set are artifcially synthesized based 
on predetermined heuristic rules. The resulting natural language 
commands are linguistically biased toward simpler linguistic pat-
terns and do not align with the complex linguistic variants inherent 

2https://github.com/vuminhduc796/GPTVoiceTasker/blob/main/prompts.txt 
3https://github.com/vuminhduc796/GPTVoiceTasker 

in real-world human spoken utterances. Second, some test exam-
ples in the existing dataset have become obsolete or are no longer 
replicable due to updates in the corresponding applications. 

To construct a test set that more closely aligns with real-world 
user interactions, we adopted a data-driven approach. We engaged 
31 participants (17 females, 14 males), with 4 individuals having 
never utilized voice assistants before, 4 using them 3-4 times a week, 
6 using them daily, and 17 using them less than 3-4 times a week. All 
participants are work professionals and university students who use 
smartphones daily. We provided these participants with screenshots 
alongside a specifc task to accomplish. We then recorded the verbal 
commands they issued to their mobile device to complete the given 
task. After the collection, we annotated the commands to specify 
the intended action and target UI elements within the Android 
system; here, the term action refers to executable functions, while 
target denotes specifc UI components or elements on the current 
screen. As a result, we collected 278 natural user commands for the 
dataset. 

Metrics: Similar to Vu et al. [67], we adopt three evaluation 
metrics, namely Exact Match Accuracy (EM), Target F1 and Action 
F1. EM calculates the percentage of instances in the test set where 
the predicted sequence exactly matches its corresponding ground-
truth sequence. The measures Target F1 and Action F1 quantify the 
average micro F1 score for the target (i.e., the UI components to be 
interacted with) and the action (i.e., the actions to be performed on 
the UI components), respectively. The F1 score for each instance is 
computed using the formula: 

2 × |pred ∩ gold|
F1 = |pred| + |gold|

where |pred| represents the size of the set of predicted targets 
or actions, and |gold| denotes the size of the set of ground-truth 
targets or actions. The average micro F1 score is calculated across 
all instances for either targets or actions. 

Baselines: We consider fve baselines for converting natural 
language into semantic meaning representations, which comprise 
actions and targets. These baselines are vanilla Seq2Seq [5], BERT-
LSTM [75], Voicify Parser [67], the GptVoiceTasker w Base-
Prompt model, and Wang et al.’s work [68]. In the original work 
by Voicify, all three baselines employ deep learning models trained 
on datasets synthesized using the Overnight method [70]. This 
method generates training sets based on predefned lists of actions 
and targets that are designed for evaluation scenarios in Voicify. 
To ensure a fair comparison, we modifed these lists to include 
the actions and targets present in our test dataset. We then re-
synthesize the training set, which includes 1,384 instances, using 
the Overnight method, adhering to the implementation outlined in 
Voicify’s work. The GptVoiceTasker with base prompt is used as 
an ablation study to the current prompt design of GptVoiceTasker. 
The base prompt contains only a minimal explanation of the task 
and the UI knowledge (XML fle) of the current mobile screen. Wang 
et al.’s work [68] was the frst to incorporate LLMs for interacting 
with mobile interfaces. We incorporated the 2-shots LLM prompts 
they demonstrated in the paper for mapping instruction to UI ac-
tions. Additionally, we have enhanced their model by integrating 
the more advanced GPT-4, which also inline with the one we used 
in GptVoiceTasker. 

https://github.com/vuminhduc796/GPTVoiceTasker
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Table 1: The experiment results of diferent baselines com-
pared with GptVoiceTasker in three metrics. 

Models EM Accuracy (%) Action F1 (%) Target F1 (%) 

Seq2Seq 25.2 47.6 35.6 
BERT-LSTM 41.4 59.7 57.3 
VoicifyParser 47.5 64.0 58.8 

GptVoiceTasker w BasePrompt 58.4 71.6 62.4 
Wang et al. [68] 79.9 85.4 83.4 
GptVoiceTasker 84.7 91.7 84.7 

4.1.2 Evaluation Result. Table 1 presents the results of our tech-
nical experiments. Overall, GptVoiceTasker outperforms all base-
line models across all metrics, achieving an 84.7% EM accuracy, 
a 91.7% Action F1 score, and a 84.7% Target F1 score. Among 
the baselines without the LLMs, the Voicify Parser performs the 
best, aligning with the results reported in its original paper [67]. 
However, its performance sufers when faced with linguistic varia-
tions in our new test set. For instance, while the command “back” 
is correctly interpreted as “( PRESS , back )”, the phrase “return 
to last page”, which represents the same command, is incorrectly 
parsed as “( SWIPE , DOWN )”. Both BERT-LSTM and Seq2Seq 
models encounter similar issues, largely because they share ar-
chitectural and training similarities with the Voicify Parser, yet 
perform even worse due to Voicify Parser being specifcally opti-
mized for task completion on Android systems. Despite the lack of 
prompt design, GptVoiceTasker with a base prompt achieved bet-
ter performance than the other three DL-based baselines. However, 
when compared with GptVoiceTasker, the results indicate that 
incorporating a multi-level knowledge-based prompt design, along 
with few-shot learning and the Chain of Thought technique within 
GptVoiceTasker, can enhance the accuracy of converting natural 
language to on-screen actions and the corresponding elements. The 
method by Wang et al. [68] demonstrates the highest capability 
among the baselines, courtesy of the LLM’s intervention, efectively 
rectifying the errors previously noted. However, the lack of the 
chain-of-thought and least-to-most prompt techniques occasionally 
leads to inaccuracies. This is evident in instances where the system 
misinterprets the intended direction in commands, such as confus-
ing DOWN with UP, or when it cannot adequately diferentiate 
between actions like PRESS ENTER or OPEN when various verbs 
are employed in the commands. 

Benefting from the integration of LLMs and the prompting 
techniques, GptVoiceTasker excels at handling linguistic variants, 
consistently deriving the intended action and target regardless of 
variations in the input. The Action F1 score for GptVoiceTasker 
reaches 91.7, indicating its enhanced ability to predict actions across 
various linguistic patterns. Moreover, we observed that LLMs ef-
fectively learns the true associations between actions and targets, 
thereby excelling at target prediction as well. For instance, PRESS 
is exclusively predicted with UI buttons, ENTER_TEXT is linked 
solely with text input felds, and OPEN corresponds to app names. 
In contrast, the baselines often learns incorrect associations and 
outputs wrong target predictions. Our experimental results show 
that GptVoiceTasker is efective in understanding and accurately 
processing diferent linguistic variations, demonstrating its adapt-
ability in real-world scenarios. 

4.2 Multi-step Execution Evaluation 
4.2.1 Experimental Setup & Metrics. This experiment assesses the 
Unprecedented Task Exploration module’s capability to execute 
unseen tasks. We evaluated the module’s performance using the 
most recent human-collected demonstrations and natural language 
instructions from the Android-in-the-wild dataset [60]. This dataset 
provides step-by-step on-screen interactions to complete tasks 
based on natural language instructions, mirroring real-world com-
mands. From this dataset, we randomly sample the data from multi-
step Google Apps subset and manually validate each pair to get 
140 test cases, with each test case has from 1 to 15 steps (M=6.705, 
SD=2.764). We treat the end screen after the fnal action in the action 
sequence from the dataset as the ground truth, indicating successful 
command execution. We did not evaluate the accuracy of each steps 
to the dataset as one task could be performed by multiple approach. 
For each test case, we have GptVoiceTasker iteratively explore the 
path to complete the instruction, comparing the destination screen 
achieved by GptVoiceTasker with the dataset’s ground truth. A 
test case was deemed successful if GptVoiceTasker reached the 
same screen as it is in the ground truth with no more than three ad-
ditional steps than the dataset demonstration. Cases where the step 
count was exceeded or the next step could not be identifed were 
marked unsuccessful. GptVoiceTasker executed commands solely 
using its task exploration module, without relying on a database 
for guidance. Similar to Sec 4.1, we used Wang et al. [68] approach 
as the baseline, which used a 2-shot prompting technique on the 
GPT-4 model, making iterative requests after each action response. 

4.2.2 Results. GptVoiceTasker achieved an 85.7% success rate 
(120 out of 140), outperforming the baseline approach by Wang et al., 
which achieved a 56.4% success rate (79 out of 140). GptVoiceTasker 
succeeded in performing logical reasoning to execute the tasks. It 
utilizes the current app name and package name to determine if 
required apps need to be opened, and uses the list of run-time 
device-available app names to query the most suitable app for the 
task. Notably, GptVoiceTasker efectively navigated tasks without 
encountering cyclic navigation issues or repeating actions, such 
as repeatedly tapping the Settings title within the Settings app, 
which hindered task completion in the baseline. This improve-
ment is attributed to the integration of historical messages and 
runtime execution error handling module. Our study also found 
that GptVoiceTasker does not rigidly adhere to the demonstrated 
paths presented in the Android-in-the-wild dataset for task comple-
tion. For example, in managing tasks within the Android Settings 
App, it occasionally opted to search directly for options rather than 
scrolling through menus to locate them. Other added constraints 
in GptVoiceTasker helped to improve the usability of multi-step 
interactions, such as validating if the current screen is scrollable or 
a text feld is focused before inserting text, which were observed as 
reasons that caused failures in the baseline. 

Further investigation into unsuccessful cases highlighted two 
main areas for improvement. First, GptVoiceTasker struggled with 
time-related tasks, such as “Check the schedule for Friday next week”, 
due to the LLM’s limited knowledge of the current date and time. 
As a result, while GptVoiceTasker correctly opened the app, it was 
unable to select the Friday of next week to view the schedule. This 
could be mitigated by integrating temporal information into our 
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prompts. Second, GptVoiceTasker exceeded the number of steps 
when performing “Open the settings page in Google Maps”, where 
the immediate step required pressing the profle picture, which is 
not directly relevant to the task command. To address this issue, 
we could enrich the prompts with additional contextual knowledge, 
such as the steps involved in accessing settings in similar applica-
tions where pressing the profle picture is necessary. Additionally, 
incorporating a strategy of random exploration steps before repeat-
ing a command could help the system discover more direct paths 
to complete tasks. 

4.3 Database Execution Evaluation 

Table 2: Saved task execution evaluation result for direct 
match tasks and parameterised tasks across 5 categories. 

Category 
Average Number of 
Automated Steps Success Rate (%) 

Direct Match Parameterised 
Message Friends 4.33 93.33 86.67 
Listen to Music 5.27 80.00 73.33 
Set an Alarm 5.73 73.33 53.33 
Check Weather 5.07 80.00 73.33 

Get Directions & Map 5.53 86.67 73.33 
Average 5.19 82.67 72.00 

4.3.1 Experimental Setup & Metric. In this experiment, we as-
sessed GptVoiceTasker’s ability to automate tasks using the usage-
based execution module. We initially identifed the fve common 
smartphone application categories, as shown in previous study [3]. 
Within each application category, we randomly selected fve popu-
lar applications from the Google Play Store, with downloads ranging 
from 1 million to over 1 billion. For each selected app, we identifed 
three features introduced by the developers in their Play Store de-
scriptions. Each feature was then used to create both a direct match 
task, involving a straightforward match between user commands 
and corresponding app actions, and a parameterized task, requiring 
GptVoiceTasker to perform keyword substitutions to complete 
the task successfully, as shown in Section 3.2.3. For creating the 
direct match test cases, we paraphrased each saved command us-
ing state-of-the-art paraphrasing tool Quillbot4, as in [63]. In the 
case of parameterized tasks, we substituted one entity in the para-
phrased command with another entity that has similar semantic. 
For example, consider the saved task “Get directions to the nearest 
supermarket”. In this case, the direct matching task would be “Find 
the nearest supermarket’s location”, while the parameterized task 
would involve substituting “restaurant” for “supermarket”, resulting 
in “Find the nearest restaurant’s location”. This process resulted in a 
total of fve app categories, each category contains 15 direct match 
tasks and 15 parameterised tasks. These tasks involve 4 to 7 steps, 
with an average of 5.19 steps per task as illustrated in Table 2. All 
tasks can be automated with one voice command with the saved 
user app usage patterns. For a detailed list of the apps and features 
used in the experiment, please refer to our GitHub repository5. 

4https://quillbot.com/
5https://github.com/vuminhduc796/GPTVoiceTasker/blob/main/Result.xlsx 

To populate the transition graph and store screen descriptions, 
we manually navigated through each screen in every application 
using GptVoiceTasker. Subsequently, we confgured the saved 
commands to reach the respective screens as the ground truth. We 
used the success rate as the primary metric, each test case is marked 
as success if GptVoiceTasker can successfully opened the desired 
feature using a single command. 

4.3.2 Results. Table 2 illustrates the accuracy of our saved task 
execution modules. Our fndings indicate that GptVoiceTasker 
achieved an impressive level of automation, successfully handling 
82.7% of exact match tasks and 72.0% of parameterized tasks. No-
tably, GptVoiceTasker exhibited exceptional performance in tasks 
related to messaging and directions & maps applications. This suc-
cess can be attributed to the relatively static nature of these apps, 
where user interfaces maintain a consistent structure. Our results 
underscore GptVoiceTasker’s profciency in command analysis, se-
mantic matching to saved tasks, and parameterized phrase substitu-
tion within these contexts. However, the accuracy of GptVoiceTasker 
diminished when confronted with tasks related to setting alarms. 
To better understand the root causes of this decline in performance, 
we conducted an error analysis on the failed test cases. Several key 
issues emerged: 

• Complex Parameterized Tasks: For parameterized tasks with 
additional steps, such as setting an alarm for 7:30 instead 
of 7:00, GptVoiceTasker struggled due to the extra step 
involved in selecting the minutes, which was on a separate 
UI element. Further works include making GptVoiceTasker 
adaptable to these additional steps in the automation process. 

• Pop-ups Ads and Unusual UI Elements: Certain applications 
presented pop-ups ads and unusual UI elements in run time 
that were not encountered during the initial task-saving 
process. Consequently, GptVoiceTasker faced difculties in 
completing these tasks. To improve the robustness of our 
approach, we recommend exploring the integration of a deep 
learning model to detect and handle such ad widgets and 
unusual UI elements, as in [25, 45]. 

5 USER STUDY 
To demonstrate the practical utility of our tool, we conducted a user 
study to evaluate the holistic performance of the GptVoiceTasker 
system within real-world scenarios. Our evaluation involved a com-
parative analysis against two baseline systems: 1) Voice Access [76], 
the ofcial voice assistant product developed by Google, with over 
100 million downloads, and 2) Voicify [67], the state-of-the-art re-
search product endeavor incorporating deep learning models to 
enhance command comprehension. This study pursued a threefold 
objective: i) establish a performance benchmark for user interac-
tions utilizing the GptVoiceTasker system as opposed to the afore-
mentioned baseline systems, ii) juxtapose user feedback concerning 
the cognitive load and overall usability of the GptVoiceTasker sys-
tem against the baselines and iii) capture qualitative insights from 
participants, thus enabling the identifcation of potential avenues 
for enhancing the GptVoiceTasker system. In order to achieve 
these objectives, we recorded the task completion times for tasks 
undertaken using both the GptVoiceTasker system and the base-
lines. Furthermore, a comprehensive post-experiment interview 

https://quillbot.com/
https://github.com/vuminhduc796/GPTVoiceTasker/blob/main/Result.xlsx
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was conducted with each participant, facilitating the collection and 
analysis of both quantitative and qualitative feedback. 

5.1 Tasks 
We designed 6 experimental tasks, encompassing a broad spectrum 
of the most common interactions performed on the screen, ranging 
from tapping and swiping to entering text. Each task was structured 
to comprise between 6 to 10 sequential steps. The detailed list of 
these tasks is outlined in Table 3. 

5.2 Participants 
We recruited 18 participants, consisting of 10 males and 8 females, 
aged between 18 and 31 years old for our study. The mean age 
of participants was 25.83 years (SD = 4.26). The group included 8 
bachelor students (from IT and Business felds), 4 master students 
(IT), and 6 PhD candidates. 8 participants are native English speaker 
while all other participants are profcient in English. All partici-
pants possess a commendable level of familiarity with technological 
devices and actively use smartphones in their daily routines. 

We advertised our experiment on LinkedIn to recruit participants 
from our university. During recruitment, participants provided their 
gender, age, study level, English profciency, tech profciency, and 
experience with voice assistants. While participants exhibited ex-
posure to virtual assistants like Siri or Google Assistant, none were 
acquainted with utilizing assistive tools for smartphone control via 
voice commands. Specifcally, none of the participants had prior 
experience with any of the experimental tools employed in our 
study. This participant selection was deliberate, as our study sought 
to gauge the learnability aspect of the experimental tools. Each 
participant received a USD $30 gift card for the participation. 

5.3 Procedure 
We conducted face-to-face user evaluations using an Android de-
vice as the experimental tool. On this device, we had the graph 
of each experimental app populated, which include the majority 
of app pages and navigation within the app. At the start of the 
sessions, participants were introduced to all experimental tools via 
demonstrative videos. The preliminary phase involved practicing 
basic tasks across all tools, enhancing participants’ familiarity with 
step-by-step instructions and informative walk-through videos. We 
also use the searching for exercise tasks in Figure. 2 as the practice 
tasks, allowing users to achieve this task using each of the tool. 

After that, participants independently executed six distinct tasks 
with no experimenter intervention. Each tool was employed for 
the completion of two tasks, and participants remained unaware of 
which tool was developed by us. To mitigate any potential biases, 
the order of tasks and the tools used were systematically counter-
balanced for each participant [19]. 

We applied a time cap of 60 seconds per step. We recorded the 
time taken to fulfl each task, including the cut-of time to perform 
quantitative analysis. We collected 108 data entries since each of 
the 18 participants has fnished 6 tasks. In the end, using the System 
Usability Scale (SUS) [7] form with a 5-point Likert scale, we eval-
uate the usability of GptVoiceTasker, compared to Voice Access 
and Voicify. In addition, we investigated the cognitive load when 
experimenting with each tool using the NASA-TLX [30] form with 

Figure 5: The average time taken to complete each task using 
GptVoiceTasker and the baselines in seconds. 

a 7-point Likert scale. Lastly, we collected qualitative feedback on 
which part they liked the most about GptVoiceTasker and what 
might improve the system. 

5.4 Result 
5.4.1 Overall User Performance. In Figure. 5, we present the av-
erage task completion times for each experimental tool. Our tool 
stands out with an average completion time of 92.5 seconds, sur-
passing Voice Access (162.2 seconds) and Voicify (141.9 seconds). 
This improvement in GptVoiceTasker’s performance can be attrib-
uted to two primary factors. Firstly, we can tell that GptVoiceTasker 
is better at comprehending user intentions and mapping user com-
mands to the correct actions on specifc UI elements, regardless 
of the command format. In contrast, baseline tools often demand 
specifc command formats, introducing errors in various usages. 
This issue caused extra time costs as participants needed to seek 
diferent ways to express their intentions with the baseline tools. 
For example, participants tried to tap the option button, in the 
Notes app with Voice Access by multiple attempts such as “press on 
the option button”, “press the three-dot icons”, “tap icon for options” 
before successfully give the right command “tap option”. Secondly, 
GptVoiceTasker optimizes the performance by automating sev-
eral steps in one user command, as shown in Table 4. On average, 
the participants saved 2.2 steps across all six tasks. For instance, 
in Task 2, GptVoiceTasker efciently automated the process of 
searching for Love Yourself song (as in Figure. 6(B)), drawing from 
a previously stored action designed for searching other songs. This 
eliminated the need for three steps required for in-app naviga-
tion. However, some participants did not realize that they could 
trigger the saved tasks, leading to a missed opportunity for a signif-
icant performance boost. In addition, GptVoiceTasker relates to 
network latency when sending and receiving data from the LLMs 
API endpoint. This issue could be mitigated with a better network 
connection. 

5.4.2 Cognitive Load & Usability Ratings. Figure. 6(A) presents an 
overview of participant feedback regarding their cognitive load 
levels for each system, assessed using the NASA-TLX form. We 
conducted a Friedman test [61] for statistical analysis on the result. 
Participants reported decreased mental demand, temporal demand, 
and efort when using GptVoiceTasker in comparison to the base-
line systems while achieving better performance. This result show 
an improvement in GptVoiceTasker’s ability to reduce the cogni-
tive load required for operation, aligning with our design goal. 
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Table 3: The list of tasks for user evaluation. 

No. Task #Steps App Name #Downloads 
1 Check the weather within a particular city. 6 BOM Weather 1M+ 
2 Search for a specifc song and play it. 6 Apple Music 100M+ 
3 Create a note and write "Hello world" and delete it. 8 Notes 1M+ 
4 Check for an unread message, reply with a mes-

sage and delete the conversation. 
8 Messages 1B+ 

5 Search for a pizza store, and complete the order. 10 Uber Eats 100M+ 
6 Create a new alarm and save it. 10 Challenges Alarm Clock 1M+ 

Table 4: Average number of automated steps by all participants in each task. 

Average Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 
#Steps Automated 2.22 2.67 2.00 1.67 2.17 2.50 2.33 

Figure 6: The comparison between GptVoiceTasker, Voicify, and Voice Access for A) the average cognitive load when using 
NASA-TLX form (lower is better) *: p < 0.01, **: p < 0.001 and B) Task 2 from the user evaluation with GptVoiceTasker and other 
baselines. 

To assess GptVoiceTasker’s usability in comparison to the base-
line systems, we employed Friedman test for statistical analysis 
on collected System Usability Scale (SUS) scores, as depicted in 
Figure. 7. The analysis verifed the enhanced usability of the voice 
control system, with GptVoiceTasker achieving an average SUS 
score of 79.861, surpassing Voicify (47.917) and Voice Access (36.528). 
Participants found GptVoiceTasker less complex (p < 0.001), less 
inconsistent (p < 0.001) and well-integrated (p < 0.001), leading to 
more frequently use (p < 0.001). In addition, participants can learn 
to use GptVoiceTasker quickly (p < 0.001) as they do not need to 
learn a lot (p < 0.001). This remarkable outcome can be attributed 
to GptVoiceTasker’s ability to efortlessly comprehend natural 
human commands, reducing the need for extensive training and 
practice. The lower likelihood of misinterpreting user commands 
also contributed to the positive results. 

5.4.3 Qalitative Feedback. In this section, we collate qualitative 
feedback from participants after the experiment. Overall, the partic-
ipants are satisfed with the tool, as well as providing suggestions 
for further improvements. 

Ability to precisely interpret and execute human command. Par-
ticipants expressed enthusiasm about the remarkable ability of 
GptVoiceTasker to interpret human commands naturally, enhanc-
ing the overall system’s intuitiveness. P1 and P12 highlighted that 
they could issue commands “in their preferred manner” and “con-
verse naturally” with GptVoiceTasker. This addresses cognitive 
overload concerns, as P4 appreciated the “stress-free experience”, 
and P6 and P7 found GptVoiceTasker more “comfortable to use”. 
For instance, when adding a new note, users could simply say “add 
a new note” to prompt GptVoiceTasker to press the add button on 
the screen. Moreover, participants were impressed by our tool’s 
accuracy in handling user input errors. P3 noted their satisfac-
tion with how GptVoiceTasker “can still execute the correct action 
even when I make mistakes in my commands”. Both P4 and P17 
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Figure 7: The comparison between GptVoiceTasker, Voicify, and Voice Access for the System Usability Scale (SUS). *: p < 0.01, **: 
p < 0.001. 

highlighted the tool’s usefulness in daily tasks, as it eliminates 
the need to “exercise caution and stay alert” when interacting with 
GptVoiceTasker. These feedback remarks strongly afrm the prac-
ticality of our approach in real-world task scenarios. In contrast, 
traditional approaches typically demand fxed input formats, mak-
ing them ill-suited for real-world scenarios where user input can 
vary signifcantly. 

Automated execution helps accelerate tasks and improve user ex-
periences. Participants ofered positive feedback regarding the use 
of saved task automation, highlighting its signifcant impact on 
efciency and user experiences. P11 mentioned that this feature is 
“accelerating the tasks” while P13 emphasized the potential utility of 
GptVoiceTasker during physical activities, stating it would be “re-
ally useful when I work out”. P5 appreciated this feature, describing 
it as “perfect for voice-interacting tools”, as it mitigates the inherent 
challenges of voice command interactions. Additionally, P18 praised 
the feature, noting that tasks became “fairly easy” with its imple-
mentation, indicating signifcant performance improvements. This, 
combined with the advanced capability to understand user inten-
tions, enhances the intuitiveness of voice-based interfaces. When 
using a smartphone, users often have a specifc task in mind, such 
as setting an alarm or checking the news. Unlike other approaches 
that require users to perform additional steps to translate their 
intention into executable commands that a voice interface can un-
derstand and execute, GptVoiceTasker can directly execute these 
tasks without causing additional mental stress. However, users also 
provided valuable suggestions for enhancement. They expressed 
the desire for GptVoiceTasker to suggest executable saved tasks 
and display a list of saved tasks. Furthermore, participants sug-
gested improving the introduction of this feature, as P4 noted it 
was “not familiar at frst”, and P6 emphasized the need for “better 
introduction.” These insights underscore opportunities to refne 
the feature’s usability and user onboarding, ultimately enhancing 
overall user satisfaction. 

Suggestions for enhancing user experience. Participants provided 
valuable suggestions for improving the intuitiveness of GptVoiceTasker. 

Regarding UI design, P14 recommended the inclusion of a “live 
transcription” feature to display recognized voice commands. This 
would help users confrm that their commands were correctly re-
ceived and make necessary adjustments if needed. Furthermore, P1 
and P15 suggested incorporating a “loading indicator” to signify 
ongoing executions, addressing latency issues caused by execution 
delays. In terms of functionality, P7 proposed displaying a list of 
available tasks as suggestions, enhancing user interaction. Addi-
tionally, P15 discussed the potential for an interface that allows 
users to modify saved tasks, providing greater customization. Lastly, 
participants P7 and P12 suggested making the audio feedback from 
GptVoiceTasker clearer. These suggestions hold signifcant value 
for GptVoiceTasker’s continuous improvement, aiming to deliver 
a more seamless user experience. 

6 DISCUSSION 
We introduced GptVoiceTasker as an autonomous speech-based 
virtual assistants. In this section, we delve into the implications and 
limitations of GptVoiceTasker. 

Towards the adoption of the voice-centric interface. The advance-
ments in natural language understanding, particularly through 
LLMs like GPT and Bard [58], are propelling the transition towards 
voice-centric interfaces. These interfaces expand the capabilities 
smartphones to devices such as smartwatches, AR-VR headsets, and 
desktops, thereby becoming more integral to everyday activities. 
While visual-manual methods such as tapping on smartphones or 
mouse-clicking on desktops are preferred for their speed and ac-
curacy, GptVoiceTasker leverages the power of LLMs to enhance 
the intuitiveness of voice interactions. This enables more intelli-
gent mapping of user intentions to visual elements, facilitating the 
shift to voice-assisted interactions and promoting wider adoption 
of voice-centric interfaces. Additionally, the features introduced 
by GptVoiceTasker contribute to the domain of voice-centric re-
search on other devices. For example, breaking down one task into 
a sequence of actions provides more fexibility than fxed intents 
(e.g., Firefox Voice [12]). The continuous learning from historical 
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usage helps these systems understand user commands better and 
personalize efcient experiences, such as preflling patient informa-
tion for Talk2Care [79] and providing personal shortcuts for Firefox 
Voice [12]. Moreover, the implementation of anonymization tech-
niques addresses privacy concerns, particularly for voice-centric 
interfaces that access the display content from screens. 

Voice-centric interfaces also improve accessibility for users with 
disabilities [80]. GptVoiceTasker helps individuals with motor and 
visual impairments by substituting touch-based interactions with 
voice commands. For motor impairments, this enables easier task 
completion on mobile devices without touching the screen. Ad-
ditionally, GptVoiceTasker provides voice shortcuts for visually 
impaired users, allowing quicker navigation of familiar screens. For 
example, users can fnd specifc buttons with commands instead of 
clicking through each one with Talkback. Natural interaction meth-
ods could also beneft individuals who struggle with technology 
and elderly users. 

Despite the promise, challenges such as the efectiveness of voice 
recognition in diverse environments still persist. Addressing these 
will be crucial for the broader adoption of voice-centric interfaces, 
like smart homes and healthcare. This transition, while challenging, 
opens new avenues for user interaction and emphasizes the need 
for continued research in the HCI domain. 

LLMs for task automation on user visual interfaces. Research has 
highlighted the capability of LLMs to provide reasoning based on 
the UI layout, applying to task automation and testing tools [27]. 
These models show remarkable capabilities in incorporating ex-
tensive knowledge concerning prevalent app design principles and 
recognizing standard mobile interface elements, including the tool-
bar, navigation drawer, and bottom navigation bar [49] to enhance 
profciency in facilitating precise in-app navigation. Our study 
highlighted the vital role of spatial information and hierarchical 
UI representations for LLMs in comprehending semantic connec-
tions between diverse UI elements, particularly useful for elements 
lacking textual information like unlabeled icons or images. In our 
user study, when tasked with deleting a message lacking a visible 
delete button, LLM intelligently suggested initiating the process 
by pressing the unlabelled icon button at the top right, typically 
the location of the option button, and then selecting “delete” from 
the ensuing options list. The core of this research lies in the trans-
formation of visual interfaces into textual descriptions that LLMs 
can process, a critical step for enabling efective task execution 
based on user inputs. Future research should address the models’ 
limitations in unconventional UI scenarios and focus on expanding 
their adaptability across varied interface designs and complex user 
tasks. As models grow, visual models (e.g., GPT-4v) can process 
images to further enhance the accuracy of such interactions. How-
ever, optimizing the usage of visual models to balance accuracy and 
efciency is crucial to compensate for the drop in response time, 
thereby improving their practical application in real-time scenarios. 
Such progress in LLM capabilities is pivotal for advancing user 
interface automation, leading to more user-friendly and efcient 
digital experiences. 

Towards responsible AI in software systems. In recent years, the 
remarkable advancements in LLMs have enabled the seamless in-
tegration of AI into various software and systems. However, this 
integration raises signifcant concerns, particularly regarding data 

privacy and security [65]. The very nature of AI-integrated systems 
requires access to data, potentially putting sensitive or confdential 
information at risk. Put in the context of voice assistants on smart-
phones, users are sceptical as smartphones contain many personal 
and sensitive data [34]. Tools like GptVoiceTasker can read such 
on-screen data and further process them to LLMs. To mitigate these 
risks, it is essential to implement several key measures, not only to 
protect users but also to build trust, thereby fostering greater adop-
tion of AI-based interactive systems. GptVoiceTasker represents 
a pioneering efort in voice-assistive research by applying personal 
information anonymization to protect user privacy when using 
LLMs for logical tasks. Additionally, when executing actions on 
behalf of users, voice assistants must operate responsibly, ensuring 
that actions do not adversely afect users. This involves seeking 
explicit user confrmation for decisions, particularly in scenarios 
where actions may have signifcant implications, such as replying 
to important emails or transferring money. Future work in this feld 
should focus on identifying sensitive actions and prompting user 
confrmation while maintaining a seamless user experience. 

Limitations. The current approach poses several limitations. Firstly, 
the usage-based execution relies prior usage in the particular ap-
plication, therefore it is inapplicable to unused apps. To address 
this challenge, our future work aims to develop a more generalized 
approach to application usage, categorizing apps by their primary 
functions. For instance, we could devise a standardized set of steps 
for searching and playing a song that could be applicable across 
various music applications, thereby simplifying the process for new 
and unfamiliar apps. Secondly, while our system shows profciency 
on Android smartphones, its efectiveness on other Android-based 
devices remains untested. As previously indicated, there’s poten-
tial to extend this voice-centric interface to a broader range of 
gadgets, including smartwatches and AR-VR head-mounted dis-
plays. Although the vocal commands might be processed by LLMs 
across devices, the user interfaces (UIs) of these devices can vary 
signifcantly in their logic and layout. For instance, the stream-
lined interface of a smartwatch might necessitate more concise 
output due to its smaller screen, while the immersive environment 
of an AR-VR device could introduce new interaction paradigms. 
This diversity in UI design and interaction methods across diferent 
devices requires more investigations in future works. 

7 CONCLUSION 
In this paper, we introduce GptVoiceTasker, an innovative virtual 
assistant designed to enhance user interactions and performance on 
smartphones. GptVoiceTasker leveraged advanced prompt engi-
neering techniques to harness the capabilities of LLMs for interpret-
ing user commands and constructing logical reasoning components. 
GptVoiceTasker further streamlined user interactions by automat-
ically storing previous usages to automate subsequent repetitive 
tasks. Our experiments demonstrated outstanding command inter-
pretation accuracy and the efectiveness of automated execution 
based on historical usage. In addition, the user evaluation validated 
GptVoiceTasker’s high usability in real-world tasks by improving 
user performance and reducing mental stress load, aligning with 
our design objectives. As an open-source project, GptVoiceTasker 
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paves the way for future enhancements in virtual assistant intuitive-
ness, contributing to the evolution of human-computer interactions. 
Further research includes applying our versatile database execution 
approach across diverse platforms and operating systems, as well as 
exploring innovative prompt engineering techniques to fne-tune 
LLMs for various reasoning tasks. 
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