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Abstract: While numerous studies have explored using various sensing techniques to measure
attention states, moment-to-moment attention fluctuation measurement is unavailable. To bridge
this gap, we applied a novel paradigm in psychology, the gradual-onset continuous performance
task (gradCPT), to collect the ground truth of attention states. GradCPT allows for the precise
labeling of attention fluctuation on an 800 ms time scale. We then developed a new technique
for measuring continuous attention fluctuation, based on a machine learning approach that uses
the spectral properties of EEG signals as the main features. We demonstrated that, even using a
consumer grade EEG device, the detection accuracy of moment-to-moment attention fluctuations was
73.49%. Next, we empirically validated our technique in a video learning scenario and found that our
technique match with the classification obtained through thought probes, with an average F1 score of
0.77. Our results suggest the effectiveness of using gradCPT as a ground truth labeling method and
the feasibility of using consumer-grade EEG devices for continuous attention fluctuation detection.

Keywords: EEG; moment-to-moment; attention detection; wearable; machine learning

1. Introduction

Attention is a neurocognitive process critical to a wide variety of everyday tasks [1].
Maintaining one’s attention for a period of time, and selectively concentrating on a stimulus
or task while ignoring others require effort, and vary based on the individual’s ability
to withstand cognitive load [2]. With the rising scale of distractions presented as part of
modern living, several research works dived into building interfaces or systems to facilitate
attention processes, e.g., attentional user interface [3], attention-aware systems [4] and
attention management systems [5]. The fundamental step in building these systems is
measuring users’ attention states.

However, due to the lack of a reliable method of labeling attention states, moment-to-
moment attention fluctuation measurement is unavailable in the current attention-related
research in the computer science (CS) communities.

Currently, discrete data collection methods, such as thought probes, self-report ques-
tionnaires and surveys [6–9], have most often been used to establish an individual baseline
for attention states. However, these methods only collect discrete data, i.e., the attention
states at the moment, and cannot reflect the continuous nature of attention [10] as data
concerning the changes from the start to the end of the attention states are unavailable.
Researchers have also used controlled tasks to label users’ attention states over the time pe-
riod of the task. For example, experiments on divided attention [11] are designed such that
full attention states are labeled as learning without distractions, and external distraction
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states are labeled as learning under environmental noise. It is, in reality, unlikely that users
remain fully in the respective states throughout their tasks. In a nutshell, current labeling
methods for attention states offer limited options for data collection; data on attention
are either collected in the form of discrete measurements (“moments in time”), or in the
form of summaries over a long period of time [12]. However, sensing continuous and
dynamic attention requires accurate labeling on attention with a regular frequency over
a period of time, and current methods, therefore, do not offer the complete picture for
understanding attention.

On the other hand, psychologists have explored methods such as vigilance tests to
label attention states based on participants’ behavior performance. Traditional attention-
measuring tests include Mackworth’s clock test [13], A-X Continuous performance tests
(A-X CPTs) [14], and Sustained Attention to Response Task (SART) [15] etc., but they all
have their own limitations [2]. In Mackworth’s clock test, subjects observed the pointer
moving around a clock for up to 2 hours and were instructed to press a key when they
observed an infrequent double moving of the pointer. In A-X CPTs, subjects were shown a
series of letters and asked to respond when they noticed an “X” or an “X” appearing after
an “A”. In SART, subjects responded to the majority of stimuli and withheld responses
to rare targets [15,16]. These tests are limited, as they merely observe the behavioral
analysis of error rate (ER) and response time (RT), i.e., they relate low attention states to
higher ER and slower RT. However, ER and RT do not always account for high frequency
attention fluctuation [17–19], as extremely fast RT could stem from inattention [20]. Recent
neurophysiological studies have highlighted the use of response time variability (RTV) as a
more effective characterization of neural networks supporting attention [2]. The second
limitation is associated with test design; when image stimuli are abruptly presented, they
become alert cues that affect participant attention levels [2,21].

Building on these methods, Rosenberg et al. [22] proposed the gradual-onset CPT
(gradCPT). The gradCPT adds to its predecessors in two major ways: firstly, gradCPT
analyzed participants’ RTV, which is more precise and enables the continuous measurement
of high-frequency attention fluctuation [17,23,24]; secondly, the gradCPT introduced a
gradual visual onset (800 ms), thus minimizing unintended effects from sudden stimuli
onset. Hence, we choose the gradCPT as our ground truth labeling task. GradCPT [22]
divided attention into attentive “in the zone” and not attentive “out of the zone” states.
GradCPT not only allows for more precise attention labeling, but also increases the time
resolution of attention-state labeling to the sub-second level (800 ms). In addition, we
used a commercial EEG device to collect data on 18 participants and trained a support
vector machine (SVM) on attention state classification in a user-dependent manner, with
an average accuracy of 73.49%. The results showed a solid step forward towards the
ultimate goal of supporting continuous, fine-grained measurement of attention state using
relatively inexpensive and accessible sensing devices, and a significant increase in accuracy
in predicting attention states, as compared with a recent EEG-based prediction on mind-
wandering [25], which leveraged participants’ probe responses during sustained-attention-
to-response task (SART) and showed an average accuracy of 60% in mind-wandering
detection across tasks.

To validate the effectiveness of our EEG-based classification method, we tested it in a
video learning scenario for the ease of comparison with the rich work in attention detection
in this scenario. We found that our EEG classified attention fluctuation labels match
with classification obtained through thought probes with an average F1 of 0.77, which
is comparable to that achieved by recent investigations that employ discrete sampling
techniques [26,27]. This study fills the gap in existing research by achieving reasonable
accuracy for continuous attention measurement with the sub-second scale. Our two studies
demonstrated the effectiveness of using gradCPT as a ground truth labeling method and
the feasibility of using EEG for continuous attention fluctuation detection across tasks on a
sub-second scale.
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The contribution of this paper is three-fold:

1. We applied gradCPT, a well-established method in psychological research, to collect
continuous attention fluctuation labels. Based on gradCPT, we developed a new
technique for measuring continuous attention with consumer grade EEG devices and
achieved 73.49% of accuracy in detection of attention fluctuation for the sub-second
scale, moment-to-moment.

2. We empirically validated our technique in a video learning scenario, which suggested
the feasibility of predicting learners’ continuous attention fluctuation while watching
lecture videos.

3. We discussed both research and application implications of measuring continuous
attention fluctuation using EEG for future studies.

2. Related Work
2.1. Attention State Classification

In this section, we discuss existing technology-based approaches for measuring atten-
tion states. In general, data regarding attention state transition are collected via behavioral
or physiological measurements. Previous research has explored behavioral cues, such as
head pose, body posture [28,29]), facial expression [30] and reading behaviors, such as read-
ing time on a given paragraph [31]. For instance, Zaletelj et al. [32] classified high, medium,
and low states of attention through Kinect features with 75% accuracy. Wang et al. [28]
divided attention states based on eye closure. However, it is difficult to establish a uniform
and consistent approach to measure attention due to contextual and individual differences.
Attention state fluctuations (e.g., mind wandering) may also be imperceptible as behavioral
cues [33].

An alternate line of research on attention state classification has investigated the use
of physiological sensors to measure attention states (see a summary of recent works in
Table 1). For example, Abdelrahman et al. [12] used thermal imaging and eye-tracking to
classify four types of attention states based on the clinical model. Di et al. [34] used electro-
dermal activity (EDA) to classify ‘engaged’ and ‘not engaged’ attention states of students
during lectures with a 60% accuracy level. Xiao et al. [11] explored the use of fingertip
photoplethysmogram(PPG) signals to classify four levels of divided attention. These works,
however, relied on discrete sampling or designed experiment conditions as ground truth,
and classified attention states over longer time spans of several minutes, which suggests
that their measurements techniques are unsuitable for fine-grained attention measurement.

2.2. EEG-Based Attention Research

Due to the close link between brain neural networks and attention, and EEG being
recognized as “a genuine window on the mind” [35], researchers in neuropsychology
have explored the correlations between EEG changes and cognitive activities in different
ways [36–38]. For instance, Ko et al. [36] demonstrated the relationship between variations
in EEG spectral dynamics and prolongation of the RT for the sustained attention task in real
classroom settings; Behzadnia et al. [37] investigated the changes in EEG frequency bands
using a conjunctive continuous performance task. Zeid et al. [38] showed the changes in
spectral behavior and event-related potential of EEG in 5 min awake and drowsy states.
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Table 1. Summary of the recent works in attention state classification using automatic physiological data.

Sensors Attention States Attention State Labeling Method Time Scale of Ground Truth Classifier Result

Thermal image
and Eye tracking [12]

Sustained attention

Controlled tasks 3 min each task Logistic Regression

75.7% AUC score for
user-independent condition-independent

Alternating attention
87% AUC score for

user-independent condition independent

Selective attention
77.4% AUC score

for user-dependent
Divided attention

EDA [34] Engaged Self-report questionnaires 45 min each questionnaire
(after a lecture) SVM 0.60 for accuracyNot engaged

PPG [11]

Full Attention (FA)

Designed tasks based on
the combination of internal

and external distractions
8 min each task RBF-SVM classifiers

50% for FA vs. EDA vs. LIDA vs. HIDA
Low internal

divided attention (LIDA) 72.2% for FA vs. EDA

High internal
divided attention (HIDA) 75.0% for FA vs. LIDA

External divided
attention (EDA) 83.3% for FA vs. HIDA
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These works demonstrated the feasibility of using EEG to measure attention and
led researchers to further explore the EEG-based classification of attention states. For
instance, Wang et al. [39] used EEG signals collected from a 32-electrode device to classify
attention focus in the driving context and achieved an accuracy of around 85%. Attention
was labeled through RT analysis on math problems which appeared at 6–8 s intervals.
Vortmann et al. [40] used EEG signals collected from a 16-electrode device to classify
internally and externally oriented attention states in the augmented reality setting, and
achieved an accuracy of 85.37% in a 13-s time scale. Di et al. [41] developed an adaptive
automation system with EEG signals from a 15-electrode device and eye-tracking technique.
The vigilance level was measured in 5 min intervals. However, these studies are limited
in that they focused on specific aspects of attention under unique contexts, the results
of which may not be generalized to other contexts. In addition, relatively complex EEG
devices were used, making it difficult to replicate in a real world context.

A few researchers trained their EEG data based on psychology tests and applied it
in real-world scenarios. Jin et al. [25] applied a SART to predict mind wandering using
EEG and achieved an average accuracy of 60%. Chen et al. [42] used an A-X continuous
performance test (CPT) to classify attention states using EEG. Sebastiani et al. [43] identi-
fied EEG features that related to decreases in vigilance on the minute time scale. However,
the tests they selected are based on ER or RT analysis, whereas the state-of-the-art psychol-
ogy tests utilized RTV to label attention states, which was shown to be a more accurate
behavior marker for attention state changes [2]. Furthermore, these tasks were unable
to reveal continuous fluctuations in attention. In this paper, we applied the most recent
RTV analysis-based attention research in psychology, the gradCPT [44], to the application
level of attention measurement. The gradCPT allows for precise attention labeling on
an 800ms time scale, and its divided attention states could reflect brain network activity,
thereby accounting for the fundamental mechanism of attention control, increasing its
generalizability and applicability to different contexts. To our knowledge, our research
pioneers the use of gradCPT as ground truth labeling and the use of EEG signals (obtained
from a portable EEG device) to effectively measure continuous attention fluctuations on a
sub-second scale.

In the following sections, we present our data collection and model training methods,
along with descriptions of the gradCPT task and devices used. In addition, we detail our
pre-processing, feature extraction and classification approaches, and report the results.
Next, we test our classification algorithm in a video learning scenario to verify that the
EEG-based model applies in the wild. Lastly, we discuss how the findings of our work can
be applied to future studies.

3. Methods

We first collected a dataset of EEG signals from 18 participants who completed three
sessions of gradCPT, then built a classifier on attention fluctuation prediction based on
EEG data. We describe the gradCPT, experiment setup, procedures, preprocessing and
model training in the following sections.

3.1. Experiment
3.1.1. Attention Labeling by the gradCPT

We use the original design of gradCPT introduced by Esterman et al. [44]. GradCPT’s
stimuli comprises 20 images, in which 10 feature city scenes, and the other 10 feature
mountain scenes. The city images are used as target images, appearing 90% of the time,
and the mountain images are used as non-target images, appearing 10% of the time. A
notable design feature in gradCPT involves the gradual transition of one image stimuli to
another, where the opacity transition is 800 ms. Participants are instructed to press a key
(space bar) when they notice the city scene, and withhold responses when mountain scenes
appear (Figure 1a). The gradCPT implementation calculates RT relative to the beginning of
each image transition. So an RT of 800 ms indicates that a user pressed the button when
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the image was 100% coherent and not overlapping with other images. Esterman et al. [44]
further detail how the gradCPT, in cases of multiple button presses, can disambiguate
the responses.

Figure 1. (a) An illustration of three continuous trials of the gradCPT. (b) A division of “in the zone” and “out of the zone”
states based on the participant’s RTV over 10 min.

The RTV, which refers to the trial-to-trial variation in RT, was calculated to classify
attention states. In gradCPT, the within subject analysis for RTV is computed via the
variance time course (VTC) on the z-normalized RTs. The VTC value represents the
absolute deviation of the trial’s RT to the mean RT of the entire run. The missing values
for trials without responses are linearly interpolated, as described by Esterman et al. [44],
from the RTs of the two surrounding trials. This VTC is further smoothened by using a
Gaussian kernel of nine trials (7 s) full-width at half-maximum (FWHM). Given that the
VTC is initially computed by taking the absolute difference of the RT at a trial with the
mean RT of the entire run, extremely fast or extremely slow RT will have higher absolute
value of the variation. This allows the values of the VTC higher than the median to capture
these extreme responses and mark them as “out of the zone” attentional states.

We use the original Matlab script developed in Esterman’s experiment [44], with a
slight modification to include timestamps for the start and end of each session for time
synchronization. The script calls functions from the Psychophysics Toolbox79 within
Matlab R2020b to construct the environment. The script is run on a desktop machine
(16 GB RAM, Intel 7 processor) with the Windows 10 operating system, and has a 23-inch
(1920 × 1080 resolution) monitor with a refresh rate of 60 Hz.

3.1.2. Setup

Figure 2 illustrates our experimental setup. We used a popular portable EEG device,
Neurosky Mindwave mobile 2, with a dry electrode placed on the forehead above the
left eye (pre-frontal left position, Fp1 in the 10–20 system) and a ground electrode on the
ear clip. The sampling rate is 512 Hz. The EEG readings from the sensor were sent via
Bluetooth to the server on a desktop. We choose the device with the measuring electrode
on Fp1 for two reasons: (1) this position is free of hair, which allows for easy placement;
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(2) the frontal lobe is the part of the brain that controls important cognitive activities such
as attention, which makes it easy to capture brain signals that are related to attention [45].
Compared with traditional wet-electrode EEG devices, which can be cumbersome, this
device is easy to wear and is low-cost.

Figure 2. The experiment setup—a participant wearing the EEG device, engaged in gradCPT.

The EEG device supports two output formats: the raw EEG signal generated from Fp1,
and the derived index of attention and meditation generated from the built-in algorithm
of Neurosky. While the latter was used in some research works [46], conflicting results
on the validity of derived attention index were reported [47–49]. The concern of the raw
signal focused on the influence of eye blinks on the raw EEG signal recording [50]. In
this paper, we only used the raw EEG signal, as it has been validated by many research
works [48,51–53]. Besides using the Neurosky device’s original noise-removal algorithm,
we also introduced our own eye-blink detection (Section 3.2.2) and noise-removal algorithm
to minimize the influence of eye blinks on EEG readings.

3.1.3. Participants and Procedure

In total, 18 participants (8 females, ageM = 23.94, ageSD = 3.17) were recruited through
university mailing lists. The research was reviewed and approved by the Departmental
Ethics Review Committee of the local university. All participants were right-handed, with
normal or corrected-to-normal vision.

Upon arrival, participants were briefed about the experimental procedure and signed
the consent forms. They were asked to wear the sanitized EEG sensors to their forehead
and left earlobes, as shown in Figure 2. Once the sensors were properly worn, participants
were asked to ignore the sensor during the experiment. They were also told to avoid head,
jaw-teeth, and mouth movements, such as mouth-clenching, as far as possible, as they can
limit the influence of muscle activities on the EEG signal. Participants were then instructed
to perform a 1 min practice session of gradCPT to familiarize themselves with the setup.
After the practice session, they were asked to perform three runs of gradCPT, each run
lasting 10 min, with a 2-min break in between each. We ran three 10-min sessions so as to
collect more data for machine learning training while reducing the possibility of fatiguing
the participants. Ten minutes is the typical duration for a gradCPT session [22], and



Sensors 2021, 21, 3419 8 of 21

having multiple runs of 10-minute sessions is common in previous studies to collect more
data [54,55]. The entire experiment lasted around 45 min and each participant received
approximately USD 7.40 for their time.

3.2. Preprocessing

Besides brain electrical activity, EEG electrodes can record environmental electromag-
netic interference or eye-blink artifacts [56,57]. Following the EEG preprocessing steps
in [58,59], we applied normalization, artifacts removal and bandpass filtering on the ex-
tracted EEG signals.

3.2.1. Normalization

Due to individual differences among participants, the resulting data distributions
have distinct differences that make the model difficult to train. In order to remove personal
factors unrelated to the task, which may otherwise affect the training model, we followed
Zhu et al. [60] and Zhang et al. [61] and normalized data from each individual using z-score
normalization. Figure 3 shows the raw signal and signal after normalization Figure 3b.

(a) (b)

(c) (d)

Figure 3. Preprocessing procedure (a) a 2 s raw EEG signal segment example where the participant had a natural blink;
(b) normalized signal; (c) EOG detection on the normalized signal; (d) five frequency bands after bandpass filtering.

3.2.2. Artifacts Removal

EEG is susceptible to both extrinsic artifacts from external environment and intrinsic
artifacts from physiological activities of the body [62]. The main extrinsic artifact is the
power line artifact, which is removed through a 50 Hz notch filter. Among intrinsic artifacts,
eye blink represented by EOG (electrooculogram) and muscle activity represented by EMG
(electromyogram) are the two artifacts that influence EEG. The frequency range of these
two artifacts overlap with EEG signals, and thus cannot be removed through bandpass
filtering [62].

Previous studies have relied on the Neurosky device’s built-in noise removal algo-
rithm [42,63], though we have noticed that, in practice, eye blinks (EOG signals) signif-
icantly influence EEG signals (Figure 3). Until now, noise removal methods for single
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channel EEG devices are relatively limited. Linear regression [64,65] and adaptive filtering,
for example, require additional reference channels with the artifacts waveforms [66]. Blind
source separation methods decompose EEG signals into components and then reconstruct,
but also require a large number of electrodes [67]. The most recent work uses deep learning
networks [68], but has a high requirement on the size of the dataset, and the technical cost
is high, too. Thus, we used a threshold value to detect EOG amplitude peaks in the EEG
signal, then a morphological method to remove false-positives and negatives to mark a
continuous EOG range (Figure 3c). According to our experiment data, the EOG effects
lasted a maximum of 450 ms. After the EOG artifacts had been identified, we replaced the
features of the EOG artifact area with corresponding values of the previous area (without
EOG artifact) in the same duration.

While feature replacement could introduce bias, as the resolution of the attention label
is 0.8 s, the effect of bias from the replacement of 450ms EOG signal could be limited and
not cause significant errors that could change the results. Erasing the epochs containing
EOG completely would result in the unavailability and the waste of a considerable amount
of data. In addition, to address the problem of independence in the time series signal,
when extracting the features for the classifier, we include features from the nine preceding
sliding windows to capture the effect of trial at time t on subsequent trials. The selection of
nine preceding windows was based on the original gradCPT study of Esterman et al. [44],
which used a Gaussian smoothing kernel of nine trials, full width at half maximum, to
compute the VTC value for a given trial.

3.2.3. Bandpass Filtering

The EEG frequency bands include delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz),
beta (13–30 Hz), and gamma (>30 Hz) waves. Thus, we applied a 0.5–50 Hz bandpass
filter to remove electromagnetic interference, while retaining the common EEG frequency
bands. The signal after bandpass filtering can be seen in Figure 3d.

3.3. Feature Extraction

The model of classification can be seen in Figure 4. We segmented the EEG signal into
non-overlapping 0.8 s segments with a corresponding gradCPT label (1 for “in the zone”
and 0 for “out of the zone”). For each participant, 2250 labels were collected for the label
with 800 ms interval in 30 min. To extract the frequency features related to each frequency
band, we used the discrete wavelet transform (DWT) for multilevel decomposition to
separate signals from five different EEG frequency bands. We computed five features
(approximate entropy, total variation, skewness, standard deviation, and energy) for each
band. The feature descriptions can be seen in Table 2. The feature vectors of three sessions
for each participant were collected from the z-normalized signal so that they are scale- and
offset-invariant. To address the problem of independence in the time series signal, after
extracting the features, we added features from nine preceding sliding windows as the
features of this window (for the first nine windows, we used none to fill non-exist values)
to get 250 features in each sliding window for training (Figure 5). The nine preceding
windows was based on the original gradCPT study of Esterman et al. [44], which used a
Gaussian smoothing kernel of nine trials, full width at half maximum, to compute the VTC
value for a given trial. This could enable the model to better learn the temporal features.

Table 2. Features computed for theta/alpha/beta/gamma/delta band and descriptions.

Feature Description

Approx. Entropy Approximate entropy of the signal
Total variation Sum of gradients in the signal

Standard variation Standard deviation of the signal
Energy Sum of squares of the signal

Skewness Sample skewness of the signal
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Figure 4. Model of classification.

Figure 5. Feature extraction process.
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3.4. Classifier

There are numerous machine learning classifiers [69] such as k-nearest neighbor
(kNN), SVM, Bayesian, as well as deep learning networks [70], such as the convolutional
neural network (CNN) and long short-term memory (LSTM), though we chose the SVM
with the radial basis function kernel, due to its popular use and in consideration of our
relatively small sample data size for each participant (2250 samples). To classify each
0.8 s EEG segment as “in the zone” or “out of the zone”, a different SVM model was
trained for each participant. To avoid overfitting the model, a 10-fold nested stratified
cross-validation (CV) was used to estimate the model’s generalization performance. The
Nested CV implementation was based on recent research by Vabalas et al. [71], who
showed that biased performance estimates arise from regular CV, but can be avoided with
Nested CV, regardless of the sample size. Stratified sampling was used to ensure that the
percentage of samples of the two classes in each fold was approximately the same as that
of the entire data set. To note, not all features in the dataset are used to train the model. We
use Student’s t-test to assess and pick the ten most relevant features and train and evaluate
the model using the ten feature we selected in each fold. The final model’s performance
was taken from the average of the balanced accuracy in the classification on the validating
set in each fold.

4. Classification Result and Discussion

Figure 6 shows the performance obtained using the trained classifier and applying
the 10-fold Nested CV protocol described in Section 3.4. Overall, the model achieved an
accuracy of 73.49% (SD = 0.05). The average F1 is 0.76 (SD = 0.06). While this accuracy does
not seem high, it is significant, considering the sub-second time scale, generalizability of
the task, and application potential of the commercial grade, low-cost EEG device. A state-
of-the-art mind-wandering EEG prediction by Jin et al. [25] leveraged participants’ probe
responses during SART and showed an average accuracy of only 60% in mind-wandering
detection across tasks. Our work demonstrates the feasibility of measuring continuous
attention fluctuation in a sub-second time scale, using commercial EEG devices.

Figure 6. Accuracy of 18 participants, P1–P18.

To present the importance result of each feature, we calculated the mean correlated
coefficient for different participants, between the attention label and all 250 features sep-
arately. Since the 250 feature input for each window can be organized into five different
feature types on five different bands for 10 different adjacent sliding windows, we can
assess the result in three different perspective. We averaged the result of 10 sliding window
shifts and presented the mean correlated coefficient of 25 features as a colored matrix
(Figure 7c). The color of each cell indicates the average correlation coefficient; the darker
the cell, the more important the feature. Similarly, we can average the result of five feature
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types (Figure 7a) or five bands (Figure 7b) to reveal the mean correlated coefficient of bands
or feature types on different sliding windows (describe as sliding window shift).

Even though this is a user-dependent model, by averaging the result for each par-
ticipant, we can conclude from Figure 7c that the eight combinations of energy, standard
variation of alpha, beta, gamma and theta bands, stand out as dominant features, followed
by approximate entropy on delta and theta bands.

Figure 7. Mean correlation coefficient for different (a) frequency band and sliding window shift; (b) feature type and sliding
window shift; (c) feature type and frequency band.

5. Validation Study—Detecting Attention Fluctuation in Video Learning

In the previous section, we demonstrated the feasibility of our technique in classifying
continuous attention fluctuation on an 800 ms time scale. To validate its usability in the
real-world, we tested the performance of our technique for predicting learner’s attention
fluctuation using a video learning scenario. We chose a video learning scenario because of
(1) the ease of implementation and testing, and (2) the rich and comparable body of work on
attention detection in this scenario. Attention measurement in the video learning scenario
is a popular research topic, given the strong correlation between attention with learning
performance [72]. We expect that our technique’s predictions can match video-learners’
attention states.

Our first step was to label the learner’s attention states. While it may be obvious that
high attention levels indicate high learning performance, learning performance tests are
not often used to assess learners’ attention states because attention is merely one cognitive
facility amongst many others utilized during test taking. Instead, thought probes and
self-reports [73] are more commonly used to assess learners’ attention states. With self-
reporting, participants report when they realize that their attention has shifted away from
the ongoing task [74]. In contrast, thought probes prompt participants at specific times to
report their attention states [75]. Our study uses thought probes to label changes in learner
attention state because it is generally considered as an effective method [24] and, unlike
self-reports, does not rely on participant meta-awareness [76].

This study explores the following questions:

• How does our model’s prediction compare to the thought probe in measuring the
learner’s attention state?

• What can continuous attention monitoring reveal about the learner’s attention state?
What are its implications for future designs?

5.1. Thought Probe and Video Material Design

Different question-and-answer thought probes have been designed, and Robison et al. [77]
has compared their validity and found different thought probes to be robustly and similarly
valid. Thus, we adopted probe questions from Unsworth et al. [24] and Deng et al. [78] which
best match our research interest—“In the moments just prior to the probe, did you focus on
the video? Yes/No”. We adopted the probe frequency and video length used in previous
research [79,80], and chose a 22′20′′ video on “the history of psychology” as the study material
and inserted 10 probes randomly at 2-min mean intervals. At every probe, the video was paused
and the question would show on screen with a black background. Following [80], participants
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were instructed to say “Yes” or “No” as an indication of whether their focus was on the video
just prior to the probe.

5.2. Participants and Procedure

We recruited 24 participants (12 females, ageM = 23.1, ageSD = 3.72) from the university
community. To minimize the impact on results from participant’s prior knowledge, we
made sure that participants did not have a background in psychology and had not watched
the video before. All the participants were native speakers of the language used in the
video. We used the same EEG device from our data collection Section 3.1.2.

Upon arrival, participants were asked to sign a consent form and informed about the
study aim. They were then asked to complete three runs of 10-min gradCPT, as per the
procedure in Section 3 for model training. After a 5 min break, they were given instructions
to the experiment and informed on how to respond to the probe questions [81,82]. During
video learning, they were not allowed to pause, rewind the video or take notes. Throughout
the experiment, participants were asked not to remove the EEG device or the electrode.
The whole experiment lasted for approximately 1 h and 15 min.

6. Results and Discussion
6.1. Prediction vs. Thought Probe Result

In total, we collected 240 probe responses. Of these, 172 were “on-task”, which is
within the normal range based on previous studies [79]. The prediction accuracy was
calculated based on the averaged prediction of the system 4 s prior to the probe moment.
The 4-s model was chosen based on the interpretation of “just prior to the probe” in
previous research [24] and the need of having odd number of labels to generate the result.
The F1 score of each participant is listed in Figure 8. The overall accuracy, precision, recall,
and F1 are 0.74 (SD = 0.09), 0.80 (SD = 0.16), 0.75 (SD = 0.14), 0.77 (SD = 0.14), respectively.

Figure 8. F1 score of 24 participants, P1–P24.

6.2. Discussion
6.2.1. Comparison with Previous Studies

We compared the model performance in our video learning scenario with results from
previous research on e-learning attention state monitoring. Hutt et al. [8] used eye gaze to
measure mind-wandering in a computerized learning scenario, and only achieved a result
of F1 = 0.59 on a 30-s time window. Huang et al. [26] measured internal thought in video
learning through eye vergence behavior achieved a result of F1 = 0.74. However, their work
only focused on the internal thought orientation of attention, and attention fluctuation
comprises more components. Brishtel et al. [27] used a combination of EDA, eye-tracking
and behavioral features to achieve a result of F1 = 0.83 on mind-wandering detection in
a multimodal reading setting, though this prediction is from the level of the paragraph
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instead moment-to-moment. Compared with these studies, we demonstrated the usability
of our technique in monitoring continuous attention fluctuation in the video learning
scenario. This result has the potential of being applied to more real-world scenarios.

6.2.2. Implication for Attention-Aware System in Video Learning

Figure 9 shows the recorded EEG signal and predicted attention states of Participant 8
(P8) during video playing (10′0′′–16′40′′), which covers the topic from “Skinner’s behaviorism”
to “core questions in psychology research”. From the figure, we can learn that the participant’s
attention during video learning fluctuated quickly, even in a few seconds. This is consistent
with the study done by Zhao et al.[6] where they used thought probes every 30 s in a
roughly 7 min video, and caught 29% mind wandering. As previous studies trained on
thought probe data cannot catch the start and the end of attention fluctuation [6,83,84], our
work can serve as a first step in designing fine-grained intervention strategies to improve
video learning experience and learning outcomes.

Figure 9. Raw EEG signal, predicted attention states, topics mentioned in the video and video timeline, all from the 400 s
time segment during P8’s video viewing. The blue spikes in the raw EEG signal are eye blinks which would be removed
following Section 3.2.2 before attention prediction.

To note, despite having shown that it is feasible to measure attention fluctuation
continuously, we do not envision persistent intervention in order to shift distracted or
“out of the zone” users into the attentive “in the zone” state. Such persistent forms of
intervention during tasks are potentially annoying to the user and unrealistic to implement.
Alternative designs could account for this issue, e.g., providing reviews adaptive to learners’
attention states after they finish video viewing.

Currently, the adaptive reviews designed for attention-aware systems in the context of
video learning are usually based on 4–5-min intervention scales, i.e., dividing a video into
4 min segments and providing a review for the segment with the lowest average attention
level [85]. This norm could be due to the lack of precise attention measurement tools,
limiting researchers to attention state summaries over a span of several minutes. However,
measurements that summarize attention fluctuation over 4–5-min video segments can be
insufficient in capturing attention fluctuations. Our method, in enabling measurements
of continuous attention fluctuation, could provide richer data, such as the exact areas
in a video where learners become distracted and move “out of the zone”. For example,
in Figure 9, the shortest “out of the zone” state of P8 happened when the definition of
“reinforcer” was introduced and lasted around 5 s. The longest “out of the zone” state
of P8 happened during “Maslow’s hierarchy of needs” was introduced and lasted around
1 min 10 s. These data can, in turn, provide learners with an adaptive review of their
learning process, i.e., they can gain insights into their conceptual learning or lack thereof.
Supplementary materials, such as interactive concept maps [86], can then be created to
re-emphasize concepts from which the user had initially turned their attention away. In
this way, learning can be highly personalized and catered to video learners’ needs.
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7. Overall Discussion

The validation study results suggest that our EEG-based technique achieved an aver-
age F1 score of 0.77 in attention fluctuation detection. In Section 6.2.1, through a comparison
with similar works in classroom-based computerized learning, video learning, and multi-
modal reading scenarios, we demonstrated that our work has comparable accuracy on a
smaller time-scale of 800 ms with more application potentials.

In line with the argument of Visuri et al. [10], applying a well-established psychologi-
cal tool to the CS community and adapting clinical measurements of attention fluctuation
to labeling would benefit the CS community in measuring attention more effectively. In
our work, the use of gradCPT first increases the time resolution of attention labels, which
allows us to train a classifier and measure attention fluctuation on the 800 ms time scale.
Current ground truth labeling methods such as the thought probe and self-report are quite
limited in this respect, as they are unable to tag massive data. Our method demonstrates
the possibility to generate massive datasets of attention ground truth, which could be
helpful for attention research in deep learning and emotion computing that rely on the
collection of bulk data. Researchers interested in continuous attention fluctuation measure-
ments with a longer time window can also use gradCPT by generating a single label from
multiple 800 ms labels. Our experimental results suggest that it is best to take the label
corresponding the largest consecutive chunk of that specific window, as it best represents
the dominant attention state in that window period. For instance, for an 8-s time window
with 10 labels, 0000011100, assign label 0. In summary, gradCPT provides a method to tag
ground truth and generate a massive dataset for EEG-based attention research.

GradCPT, used in our experimental context, also supports the current psychological
insights on the neural mechanisms behind attention control. Previous studies in psychology
and neuroscience [87,88] have highlighted the importance of two brain networks, the dorsal
frontoparietal attention network (DAN) and the default mode network (DMN) in mediating
attention switches, and Esterman et al. [44] identified correlations between the neural and
behavioral aspects of continuous attention fluctuation. For instance, the stable “in the zone”
state in gradCPT was shown to be related to moderate DMN activity. On the other hand, CS
researchers usually focused on different aspects of attention stimuli and defined attention
within a specific context [11,89,90], e.g., the divided attention research in video learning [11]
focused on only two stimuli of distraction—multitasking and environmental noise—and
this potentially limits its generalization to other contexts. In our work, we distinguish
attention states based on a RTV analysis in gradCPT, depending less on distractions
or other environmental factors. This suggests that it could theoretically be applied to
multiple domains.

In addition, the barrier for adopting our methods in future investigations is lower
because it only requires a consumer-grade EEG device, which is portable, relatively low-
cost, and easy to use. Real-time and fine-grained monitoring of daily attention tasks is, as a
result, made accessible. Though there are debates over the validity of these devices, they
focused on the validity of the derived attention index and the influence of EOG artifacts.
We avoided the use of derived attention index, focused on the relatively reliable raw EEG
signals, and applied the EOG removal algorithms, to ensure the validity of our work.

8. Challenges, Limitations and Future Work

Our work is a first step in the EEG-based classification of continuous attention fluc-
tuation on the sub-second scale. Future research can go even further by calibrating this
research to different real-world contexts, though we note that there may be several chal-
lenges in this endeavor. The first challenge pertains to the motion artifacts that could
influence real-time usage in ubiquitous environments. In our video learning scenario,
participants sat with minimal body movements, and were instructed to refrain from taking
notes, stopping, or rewinding the video, all of which are behaviors regularly found in
real-world environments. Devices similar to the Neurosky Mindwave mobile 2, a common
consumer-grade EEG headband, have been used in research studying various mobile
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contexts [57,91], though large body movements were not usually accounted for in such
research. Hence, for environments involving more body movements, additional algo-
rithms for removing motion artifacts could be explored. Such research could expand the
application potential of our technique in dynamic environments, such as for on-the-go
and multitasking scenarios. To enable its use in specific real-world contexts, especially
those contexts requiring highly accurate attention monitoring, e.g., driving, additional
and robust noise removal approaches should be explored to remove specific noises in the
environment, and context features such as wheel movement could be combined to improve
classification accuracy. The second challenge concerns artifact removal. In the beginning
stage, we identified the influence of EOG on the EEG signals, thus we removed EOG signal
noise via feature replacement. However, previous studies showed that spontaneous eye
blink rate [92] as well as frontalis muscle activity [93] can be used as an index of attention.
Combining additional measurements such as EOG and EMG with EEG could improve
classification accuracy and provide insights into attention states.

The limitations of our research concerns the accuracy of model training and the
computation cost of DWT when applied online. First, we used a commercial EEG device
with the measuring electrode on Fp1 because of its common usage and general applicability.
The accuracy of our results is thus limited to the consumer-grade tool and its single-
channel EEG input option. In addition, the model is trained in a person-specific manner,
i.e., we record the user’s gradCPT performance prior to use as a means of calibration.
While it is undesirable from the usability point of view, our model requires fewer data
points due to the small window size, thus methods such as transfer learning [94] could
significantly reduce the duration of the gradCPT to make for easier calibration in the
future. Second, DWT is computationally intensive. Considering that sensor computing
hardware is becoming increasingly accessible, designing hardware optimized for DWT
computation, as suggested by Elsayed et al. [95], could allow for efficient implementation
when serving online.

9. Conclusions

In this paper, we proposed a technique to measure moment-to-moment continuous
attention fluctuation with the consumer-grade EEG device. To achieve this, we first applied
the gradCPT, a well-established model in psychology to collect the ground truth of attention
fluctuation. The gradCPT is able to precisely label attention state at the sub-second time
scale of 800 ms, and has high potential for wide and general usage. Through collecting EEG
signals with a consumer-grade device, we trained a classifier and achieved an accuracy of
73.49% in attention fluctuation detection. We then tested its generalization in a video learn-
ing scenario and achieved an average F1 score of 0.77 in attention fluctuation prediction.
This result is comparable with previous studies on attention in e-learning scenarios, but
contributes further by offering measurements at this level of accuracy on the sub-second
scale, and is usable in contexts beyond e-learning. Overall, our work demonstrates the
feasibility of using a commercial EEG device to measure moment-to-moment continuous
attention fluctuation, which has broad potential use in building attention-aware systems
and future attention related research.
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The following abbreviations are used in this manuscript:

CNN Convolutional neural network
CPT Continuous performance test
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DWT Discrete wavelet transform
EDA Electrodermal activity
EEG Electroencephalography
EMG Electromyogram
EOG Electrooculogram
ER Error rate
fMRI Functional magnetic resonance imaging
gradCPT Gradual onset CPT
iEEG Intracranial electroencephalography
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SVM Support Vector Machine
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